skip to main content

Title: Resolving electron injection from singlet fission-borne triplets into mesoporous transparent conducting oxides
Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore ( ADT-COOH ) adsorbed to mesoporous indium tin oxide ( nanoITO ), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO : ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than −0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Triplet population dynamics of solution cast films of isolated polymorphs of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pn) provide quantitative experimental evidence that triplet excitation energy transfer is the dominant mechanism for correlated triplet pair (CTP) separation during singlet fission. Variations in CTP separation rates are compared for polymorphs of TIPS‐Pn with their triplet diffusion characteristics that are controlled by their crystal structures. Since triplet energy transfer is a spin‐forbidden process requiring direct wavefunction overlap, simple calculations of electron and hole transfer integrals are used to predict how molecular packing arrangements would influence triplet transfer rates. The transfer integrals reveal how differences in the packing arrangements affect electronic interactions between pairs of TIPS‐Pn molecules, which are correlated with the relative rates of CTP separation in the polymorphs. These findings suggest that relatively simple computations in conjunction with measurements of molecular packing structures may be used as screening tools to predict a priori whether new types of singlet fission sensitizers have the potential to undergo fast separation of CTP states to form multiplied triplets.

    more » « less
  2. Abstract

    Experimental studies to reveal the cooperative relationship between spin, energy, and polarization through intermolecular charge‐transfer dipoles to harvest nonradiative triplets into radiative singlets in exciplex light‐emitting diodes are reported. Magneto‐photoluminescence studies reveal that the triplet‐to‐singlet conversion in exciplexes involves an artificially generated spin‐orbital coupling (SOC). The photoinduced electron parametric resonance measurements indicate that the intermolecular charge‐transfer occurs with forming electric dipoles (D+•→A−•), providing the ionic polarization to generate SOC in exciplexes. By having different singlet‐triplet energy differences (ΔEST) in 9,9′‐diphenyl‐9H,9′H‐3,3′‐bicarbazole (BCzPh):3′,3′″,3′″″‐(1,3,5‐triazine‐2,4,6‐triyl)tris(([1,1′‐biphenyl]‐3‐carbonitrile)) (CN‐T2T) (ΔEST= 30 meV) and BCzPh:bis‐4,6‐(3,5‐di‐3‐pyridylphenyl)‐2‐methyl‐pyrimidine (B3PYMPM) (ΔEST= 130 meV) exciplexes, the SOC generated by the intermolecular charge‐transfer states shows large and small values (reflected by different internal magnetic parameters: 274 vs 17 mT) with high and low external quantum efficiency maximum, EQEmax(21.05% vs 4.89%), respectively. To further explore the cooperative relationship of spin, energy, and polarization parameters, different photoluminescence wavelengths are selected to concurrently change SOC, ΔEST, and polarization while monitoring delayed fluorescence. When the electron clouds become more deformed at a longer emitting wavelength due to reduced dipole (D+•→A−•) size, enhanced SOC, increased orbital polarization, and decreased ΔESTcan simultaneously occur to cooperatively operate the triplet‐to‐singlet conversion.

    more » « less
  3. Two new Rh 2 ( ii , ii ) dyes were synthesized and anchored to TiO 2 for charge injection upon irradiation. The 1 ML-LCT (metal/ligand-to-ligand charge transfer) excited state is populated upon excitation, which decays to the corresponding 3 ML-LCT state. Ultrafast electron injection into TiO 2 from the Rh 2 ( ii , ii ) dyes was achieved with low energy, red light excitation. 
    more » « less
  4. The nature and extent of the spin-entanglement in the triplet-triplet biexciton with total spin zero in correlated-electron π-conjugated systems continues to be an enigma. Differences in the ultrafast transient absorption spectra of free triplets versus the triplet-triplet can give a measure of the entanglement. This, however, requires theoretical understandings of transient absorptions from the optical spin-singlet, the lowest spin-triplet exciton, as well as from the triplet-triplet state, whose spectra are often overlapping and hence difficult to distinguish. We present a many-electron theory of the electronic structure of the triplet-triplet, and of complete wavelength-dependent excited state absorptions (ESAs) from all three states in a heteroacene dimer of interest in the field of intramolecular singlet fission. The theory allows direct comparisons of ESAs with existing experiments as well as experimental predictions, and gives physical understandings of transient absorptions within a pictorial exciton basis that can be carried over to other experimental systems. 
    more » « less
  5. Many emerging light-harvesting systems for solar-energy capture depend on absorption of light by molecular dyes and subsequent electron transfer to metal-oxide semiconductors. However, the inhomoge- neous electron-transfer process is often misunderstood when analogies from bimolecular electron transfer are used to explain experimental trends. Here, we develop and apply a theoretical methodology that correctly incorporates the semiconductor density of states and the system reorganization energies to explain observed trends in a series of molecular sensitizers. The effects of chalcogen and bridge substitution on the electron transfer in rhodamine− TiO2 complexes are theoretically investigated by combining density functional theory (DFT)/time-dependent DFT calculations and Fermi’s golden rule for the rate constant. It is shown that all dyes exhibit τeT < 4 ps. Dyes with thiophene bridges exhibit shorter τeT (∼1 ps) than dyes with phenylene bridges (∼4 ps). When the planes of the dye core and bridge are fixed at coplanarity, the dye−TiO2 coupling strength is found to increase by a factor of ∼2 when compared with the Franck− Condon geometry. However, the donor energy level of coplanar dyes falls significantly below the TiO2 conduction band edge so that, despite enhanced coupling, electron transfer is slowed to ∼20 ps. Similar results appear for the excited triplet states of these dyes, showing that the intersystem crossing to low energy triplet states can increase electron-transfer time constants to 60−240 ps. These results are compared to the results of previous photocatalytic hydrogen generation and dye-sensitized solar cell experiments. 
    more » « less