skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chromophores inspired by the colors of fruit, flowers and wine
Abstract Anthocyanins, which are responsible for most of the red, blue and purple colors of fruits and flowers, are very efficient at absorbing and dissipating light energy via excited state proton transfer or charge-transfer mediated internal conversion without appreciable excited triplet state formation. During the maturation of red wines, grape anthocyanins are slowly transformed into pyranoanthocyanins, which have a much more chemically stable pyranoflavylium cation chromophore. Development of straightforward synthetic routes to mono- and disubstituted derivatives of the pyranoflavylium cation chromophore has stimulated theoretical and experimental studies that highlight the interesting absorption and emission properties and redox properties of pyranoflavylium cations. Thus, p-methoxyphenyl substitution enhances the fluorescence quantum yield, while a p-dimethylaminophenyl substituent results in fast decay via a twisted intramolecular charge-transfer (TICT) state. Unlike anthocyanins and their synthetic analogs (flavylium cations), a variety of pyranoflavylium cations form readily detectable excited triplet states that sensitize singlet oxygen formation in solution and exhibit appreciable two-photon absorption cross sections for near-infrared light, suggesting a potential for applications in photodynamic therapy. These excited triplet states have microsecond lifetimes in solution and excited state reduction potentials of at least 1.3 V vs. SCE, features that are clearly desirable in a triplet photoredox catalyst.  more » « less
Award ID(s):
1800602
PAR ID:
10105797
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Pure and Applied Chemistry
Volume:
0
Issue:
0
ISSN:
0033-4545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore ( ADT-COOH ) adsorbed to mesoporous indium tin oxide ( nanoITO ), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO : ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than −0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor. 
    more » « less
  2. Abstract Synthetic fluorescent protein chromophores have been reported for their singlet state fluorescence properties and applications in bioimaging, but rarely for the triplet state chemistries. Herein, we enabled their photo‐sensitizing and photo‐crosslinking properties through rational modulations. Extension of molecular conjugation and introduction of heavy atoms promoted the generation of reactive oxygen species. Unlike other photosensitizers, these chromophores selectively photo‐crosslinked aggregated proteins and uncovered the interactome profiles. We also exemplified their general applications in chromophore‐assisted light inactivation, photodynamic therapy and photo induced polymerization. Theoretical calculation, pathway analysis and transient absorption spectroscopy provided mechanistic insights for this triplet state chemistry. Overall, this work expands the function and application of synthetic fluorescent protein chromophores by enabling their triplet excited state properties. 
    more » « less
  3. We report high-level electronic structure calculations of electronic states in the miniSOG (for mini Singlet Oxygen Generator) photoactive protein designed to produce singlet oxygen upon light exposure. We consider a model system with a riboflavin (RF) chromophore. To better understand the photosensitization process, we compute relevant electronic states of the combined oxygen-chromophore system and their couplings. The calculations suggest that singlet oxygen can be produced both by inter-system crossing, via a triplet state of the RF(T1)×O2(3Σ− g ) character as well as by triplet excitation energy transfer via a singlet state of the same character. Importantly, the former channel produces O2(1Σ+ g ), an excited state of singlet oxygen, which is known to convert with unit efficiency into O2(1∆g) The calculations also provide evidence for the production of the triplet state of the chromophore via internal conversion facilitated by oxygen. Our results provide concrete support to previously hypothesized scenarios. 
    more » « less
  4. Two heteroleptic monocationic Ir( iii ) complexes bearing 6,6′-bis(7-benzothiazolylfluoren-2-yl)-2,2′-biquinoline as the diimine ligand with different degrees of π-conjugation were synthesized and their photophysics was investigated by spectroscopic techniques and first principles calculations. These complexes possessed two intense absorption bands at 300–380 nm and 380–520 nm in toluene that are predominantly ascribed to the diimine ligand-localized 1 π,π* transition and intraligand charge transfer ( 1 ILCT)/ 1 π,π* transitions, respectively, with the latter being mixed with minor 1 MLCT (metal-to-ligand charge transfer)/ 1 LLCT (ligand-to-ligand charge transfer) configurations. Both complexes also exhibited a spin-forbidden, very weak 3 MLCT/ 3 LLCT/ 3 π,π* absorption band at 520–650 nm. The emission of these complexes appeared in the red spectral region ( λ em : 640 nm for Ir-1 and 648 nm for Ir-2 in toluene) with a quantum yield of <10% and a lifetime of hundreds of ns, which emanated from the 3 ILCT/ 3 π,π* state. The 3 ILCT/ 3 π,π* state also gave rise to broad and moderately strong transient absorption (TA) at ca. 480–800 nm. Extending the π-conjugation of the diimine ligand via inserting CC triplet bonds between the 7-benzothiazolylfluoren-2-yl substituents and 2,2′-biquinoline slightly red-shifted the absorption bands, the emission bands, and the TA bands in Ir-2 compared to those in Ir-1 that lacks the connecting CC triplet bonds in the diimine ligand. The stronger excited-state absorption with respect to the ground-state absorption at 532 nm led to strong reverse saturable absorption (RSA) for ns laser pulses at this wavelength, with the RSA of Ir-2 being slightly stronger than that of Ir-1, which correlated well with their ratios of the excited-state to ground-state absorption cross sections ( σ ex / σ 0 ). These results suggest that extending the π-conjugation of the 2,2′-biquinoline ligand via incorporating the 7-benzothiazolylfluoren-2-yl substituents retained the broad but weak ground-state absorption at 500–650 nm, meanwhile increased the triplet excited-state lifetimes, which resulted in the much stronger triplet excited-state absorption in this spectral region and strong RSA at 532 nm. Thus, these complexes are promising candidates as broadband reverse saturable absorbers. 
    more » « less
  5. Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends. 
    more » « less