Experience management (EM) agents in multiplayer serious games face unique challenges and responsibilities regarding the fair treatment of players. One such challenge is the Greedy Bandit Problem that arises when using traditional Multi-Armed Bandits (MABs) as EM agents, which results in some players routinely prioritized while others may be ignored. We will show that this problem can be a cause of player non-adherence in a multiplayer serious game played by human users. To mitigate this effect, we propose a new bandit strategy, the Shapley Bandit, which enforces fairness constraints in its treatment of players based on the Shapley Value. We evaluate our approach via simulation with virtual players, finding that the Shapley Bandit can be effective in providing more uniform treatment of players while incurring only a slight cost in overall performance to a typical greedy approach. Our findings highlight the importance of fair treatment among players as a goal of multiplayer EM agents and discuss how addressing this issue may lead to more effective agent operation overall. The study contributes to the understanding of player modeling and EM in serious games and provides a promising approach for balancing fairness and engagement in multiplayer environments.
more »
« less
Multiplayer Modeling via Multi-Armed Bandits
This paper focuses on player modeling in multiplayer adaptive games. While player modeling has received a significant amount of attention, less is known about how to use player modeling in multiplayer games, especially when an experience management AI must make decisions on how to adapt the experience for the group as a whole. Specifically, we present a multi-armed bandit (MAB) approach for modeling groups of multiple players. Our main contributions are a new MAB frame- work for multiplayer modeling and techniques for addressing the new challenges introduced by the multiplayer context, extending previous work on MAB-based player modeling to account for new group-generated phenomena not present in single-user models. We evaluate our approach via simulation of virtual players in the context of multiplayer adaptive exergames.
more »
« less
- Award ID(s):
- 1816470
- PAR ID:
- 10288311
- Date Published:
- Journal Name:
- Proceedings of the 3rd IEEE Conference on Games
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In distributed multiplayer games, it can be difficult to communicate strategic information for planning game moves and player interactions. Often, players spend extra time communicating, reducing their engagement in the game. Visual annotations in game maps and in the gameworld can address this problem and result in more efficient player communication. We studied the impact of real-time feedback on planning annotations, specifically two different annotation types, in a custom-built, third-person, multiplayer game and analyzed their effects on player performance, experience, workload, and annotation use. We found that annotations helped engage players in collaborative planning, which reduced frustration, and shortened goal completion times. Based on these findings, we discuss how annotating in virtual game spaces enables collaborative planning and improves team performance.more » « less
-
Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and updates on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs.more » « less
-
In recent years there have been great strides in artificial intelligence (AI), with games often serving as challenge problems, benchmarks, and milestones for progress. Poker has served for decades as such a challenge problem. Past successes in such benchmarks, including poker, have been limited to two-player games. However, poker in particular is traditionally played with more than two players. Multiplayer games present fundamental additional issues beyond those in two-player games, and multiplayer poker is a recognized AI milestone. In this paper we present Pluribus, an AI that we show is stronger than top human professionals in six-player no-limit Texas hold’em poker, the most popular form of poker played by humans.more » « less
-
Modeling player engagement is a key challenge in games. However, the gameplay signatures of engaged players can be highly context-sensitive, varying based on where the game is used or what population of players is using it. Traditionally, models of player engagement are investigated in a particular context, and it is unclear how effectively these models generalize to other settings and populations. In this work, we investigate a Bayesian hierarchical linear model for multi-task learning to devise a model of player engagement from a pair of datasets that were gathered in two complementary contexts: a Classroom Study with middle school students and a Laboratory Study with undergraduate students. Both groups of players used similar versions of Crystal Island, an educational interactive narrative game for science learning. Results indicate that the Bayesian hierarchical model outperforms both pooled and context-specific models in cross-validation measures of predicting player motivation from in-game behaviors, particularly for the smaller Classroom Study group. Further, we find that the posterior distributions of model parameters indicate that the coefficient for a measure of gameplay performance significantly differs between groups. Drawing upon their capacity to share information across groups, hierarchical Bayesian methods provide an effective approach for modeling player engagement with data from similar, but different, contexts.more » « less
An official website of the United States government

