Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »
All the Pieces Matter: The Relationship of Momentary Self-efficacy and Affective Experiences with CS1 Achievement and Interest in Computing
There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18 more »
- Editors:
- Ko, A. K.
- Award ID(s):
- 1937700
- Publication Date:
- NSF-PAR ID:
- 10288353
- Journal Name:
- Proceedings of the 17th ACM Conference on International Computing Education Research
- Page Range or eLocation-ID:
- 252 to 265
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognizemore »
-
The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and facultymore »
-
Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of themore »
-
Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of themore »