Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway. 
                        more » 
                        « less   
                    
                            
                            All the Pieces Matter: The Relationship of Momentary Self-efficacy and Affective Experiences with CS1 Achievement and Interest in Computing
                        
                    
    
            There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18 times over the course of a semester about their self-efficacy, frustration, and situational interest. With this data, we used a multivariate, multi-level statistical model that allowed us to estimate how students’ granular, momentary experiences (measured through the experience sampling method surveys) and initial interest, self-efficacy, and self-reported gender (measured through traditional surveys) relate to their longer-term interest and achievement in the course. We found that students’ momentary experiences have a significant impact on their interest in computing and course outcomes, even controlling for the self-efficacy and interest students reported at the beginning of the semester. We also found significant gender differences in students’ momentary experiences, however, these were reduced substantially when students’ self-efficacy was added to the model, suggesting that gender gaps could instead be self-efficacy gaps. These results suggest that students’ momentary experiences in CS1, how they experience the course week to week, have an impact on their longer-term interest and learning outcomes. Furthermore, we found that male and female students reported different experiences, suggesting that improving the CS1 experiences that students have could help to close gender-related participation gaps. In all, this study shows that the granular experiences students have in CS1 matter for key outcomes of interest to computing education researchers and educators and that the experience sampling method, more common in fields adjacent to computer science education, provides one way for researchers to integrate the experiences students have into our accounts of why students become interested in computing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1937700
- PAR ID:
- 10288353
- Editor(s):
- Ko, A. K.
- Date Published:
- Journal Name:
- Proceedings of the 17th ACM Conference on International Computing Education Research
- Page Range / eLocation ID:
- 252 to 265
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Introduction: The emergence and widespread adoption of generative AI (GenAI) chatbots such as ChatGPT, and programming assistants such as GitHub Copilot, have radically redefined the landscape of programming education. This calls for replication of studies and reexamination of findings from pre-GenAI CS contexts to understand the impact on students. Objectives: Achievement Goals are well studied in computing education and can be predictive of student interest and exam performance. The objective in this study is to compare findings from prior achievement goal studies in CS1 courses with new CS1 courses that emphasize the use of human-GenAI collaborative coding. Methods: In a CS1 course that integrates GenAI, we use linear regression to explore the relationship between achievement goals and prior experience on student interest, exam performance, and perceptions of GenAI. Results: As with prior findings in traditional CS1 classes, Mastery goals are correlated with interest in computing. Contradicting prior CS1 findings, normative goals are correlated with exam scores. Normative and mastery goals correlate with students’ perceptions of learning with GenAI. Mastery goals weakly correlate with reading and testing code output from GenAI.more » « less
- 
            In this paper, we present the results of an investigation into the effects of engaging with robotic telescopes during an Astronomy 101 (Astro101) course in the United States and Canada on the self-efficacy of students. Using an astronomy self-efficacy survey that measures both astronomy personal self-efficacy and instrumental self-efficacy, the authors probed their covariance with the respondents’ experience of an Astro101 course that uses robotic telescopes to collect astronomical data. Strong effects on both self-efficacy scales were seen over the period of a semester utilizing a scalable educational design using robotic telescopes. After participation in the course, the results show that the gender gap in self-efficacy between self-identified men and women is largely reduced to statistically insignificant differences compared to the initial large significant difference.more » « less
- 
            Background and Context: Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self- efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. Objective: We wanted to explore upper elementary students’ self- efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming. Method: We implemented a five-week CS intervention with 4th and 5th grade students and collected self-report data on students’ CS attitudes and conceptual understanding, as well as transcripts of dyads talking while problem solving on a pair programming task. Findings: The students’ self-report data, organized by dyad, fell into three categories based on the dyad’s CS self-efficacy and conceptual understanding scores. Findings from within- and cross-case analyses revealed a range of ways the dyads’ self-efficacy and CS conceptual understanding affected their collaborative and regulated discourse. Implications: Recommendations for practitioners and researchers are provided. We suggest that upper elementary students learn about productive disagreement and how to peer model. Additionally, our findings may help practitioners with varied ways to group their students.more » « less
- 
            null (Ed.)Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of the course in future years. A key measure of success will be improved participant course grades in the introductory chemistry courses for majors. Our design process has been centered on weekly meetings that alternate between literature review and course design. The design process was initiated with backward design principles and continues with ongoing revision. The goals, design strategy, and design process of this new course will be presented along with the achieved student outcomes during the implementation of the past summer 2020.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    