This paper presents the results of a confirmatory factor analysis on two self-efficacy scales designed to probe the self-efficacy of college-level introductory astronomy (Astro-101) students (n ¼ 1381) from 22 institutions across the United States of America and Canada. The students undertook a course based on similar curriculum materials, which involved students using robotic telescopes to support their learning of astronomical concepts covered in the “traditional” Astro-101 courses. Previous research by the authors using these self-efficacy scales within a pre-/post-test approach showed both high reliabilities and very high construct validities. However, the scale purporting to measure students’self-efficacy in relation to their use of the astronomical instrumentation associated with online robotic telescopes was particularly skewed and required further investigation. This current study builds on the previous work and shows how a slight adjustment of the survey items presents an improved and robust scale for measuring self-efficacy.
more »
« less
Self-efficacy changes and gender effects on self-efficacy in a large-scale robotic telescope focused curriculum
In this paper, we present the results of an investigation into the effects of engaging with robotic telescopes during an Astronomy 101 (Astro101) course in the United States and Canada on the self-efficacy of students. Using an astronomy self-efficacy survey that measures both astronomy personal self-efficacy and instrumental self-efficacy, the authors probed their covariance with the respondents’ experience of an Astro101 course that uses robotic telescopes to collect astronomical data. Strong effects on both self-efficacy scales were seen over the period of a semester utilizing a scalable educational design using robotic telescopes. After participation in the course, the results show that the gender gap in self-efficacy between self-identified men and women is largely reduced to statistically insignificant differences compared to the initial large significant difference.
more »
« less
- PAR ID:
- 10535935
- Publisher / Repository:
- Physical Review Physics Education Research
- Date Published:
- Journal Name:
- Physical Review Physics Education Research
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 2469-9896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We are assessing the impact of an intervention (a two-day voluntary workshop) on the specific factors of self-efficacy and student integration. This workshop, called the “ChemE Camp”, takes place just before the start of fall classes and includes team-building exercises, presentations from faculty about upcoming classes, a hands-on project, a lab tour, presentations from upper-level students and alumni about their experiences in the curriculum and in industry, information about academic advising and the career fair, and some recreational games. Students attending the camp learn more about chemical engineering courses and the profession and also have the opportunity to meet peers and interact with faculty and upper-level students. We hypothesized that the activities included in the camp would positively impact on students’ self-efficacy and social integration, factors which have been shown in other studies to significantly influence student experience and student success. The effects of the intervention were assessed using surveys administered to students at the start of the camp. These surveys included published subscales used in the study of self-efficacy and social and academic integration. The same surveys were administered to all second-year chemical engineering students at the beginning of the academic year (three days after the beginning of the camp) and the end of the academic year (approximately eight months later). Data collected from the previous three academic years indicate a statistically significant increase in the chemical engineering self-efficacy, coping self-efficacy, and social and academic integration ratings for students who attend the camp and these effects appear to largely be maintained throughout the sophomore year. Non-attendees enter the sophomore year with lower average ratings in these factors and show little change over the course of the year. Students’ intent to persist in the chemical engineering major was also assessed by these surveys, and while the camp attendees’ ratings showed almost no change from just prior to the camp to just after, their ratings exhibited a substantial, statistically-significant increase during the sophomore year. Non-attendees entered the year with a similar average rating to the attendees but showed a much more modest increase over the course of the year. We continue to collect data from both student survey responses and academic records, with the goal of eventually using path analysis to establish the relationships between the factors of self-efficacy and student integration and the outcomes of academic performance and persistence for second-year chemical engineering students. We currently have insufficient data to power such an analysis, but our available data suggest that the intervention is having a positive impact on these factors.more » « less
-
This paper explores a learning environment that may foster innovation in the engineering curriculum. In this study, the innovation self-efficacy of undergraduate environmental engineering students is explored in a target course before and after a curricular intervention which has been shown to have the potential to enhance innovation self-efficacy. A design mentor and an education mentor outside of the course supported the students through their engineering design process. During the start and end of this curricular intervention, a survey consisting of the Very Brief Innovation Self-Efficacy scale (ISE.5), the Innovation Interests scale (INI), and the Career Goals: Innovative Work scale (CGIW) was administered to measure students’ shift in: 1) Innovation Self-Efficacy, 2) Innovation Interests, and 3) Innovative Work. Formal feedback from the mentors was utilized in interpreting the survey outcomes. Results generated from this survey show a modest increase in innovation self-efficacy. Nevertheless, less impact was found compared to the previous year when innovation attitudes were weaker in the pre-survey.more » « less
-
Effective and equitable CS teaching in classrooms is contingent on teachers' high-levels of self-efficacy in CS as well as a robust understanding of equity issues in CS classrooms. To this end, our study examined the influence of a professional development (PD) course, Teaching Exploring Computer Science (TECS), on promoting teacher self-efficacy and equity awareness in CS education. This nine-week PD was offered in a hybrid format, delivering on-line and face-to-face classes to high school teachers across various disciplines who served under-represented students. The participants completed a selfefficacy survey focusing on their ability to teach ECS, both before and after the course. Results showed that teachers' selfefficacy in the content knowledge and pedagogical knowledge of ECS significantly increased as a result of taking the course. We also evaluated teacher's understanding of the equity issues by conducting a content analysis of their reflection essays written at the end of the course. Four major themes emerged from the content analysis, highlighting the impact of equitable practices on CS participation. This research demonstrates the role of a professional development course in promoting teachers' self-efficacy beliefs in teaching CS and their understanding of the equity issues and presents tools for assessing teachers' development in these areas.more » « less
-
Abstract: Nationwide K–6 engineering and coding standards have made it increasingly important to prepare elementary preservice teachers (PSTs) to teach these subjects confidently and effectively. Robotics, which combines coding and engineering, provides a rich context for developing PSTs’ expertise and self-efficacy. This study builds on prior work in which PSTs in an instructional technology course collaborated with undergraduate engineering students to co-teach robotics lessons to fifth graders. Using a multiple-embedded case study approach, we examine how the interactions and teaching roles within these partnerships influenced PSTs’ teaching self-efficacy. Drawing on reflections, lesson recordings, surveys, and interviews, we present the cases of three PSTs—Lisa, Madison, and Kayla—who experienced varying levels of partner support and student engagement. Lisa and Madison were both compelled to lead robotics instruction due to perceived lack of support from their engineering partners, yet they experienced contrasting outcomes: Lisa struggled with disengaged students and malfunctioning robots, which diminished her self-efficacy, while Madison's success with highly engaged students bolstered hers. Kayla, in contrast, developed self-efficacy over time through a productive partnership with a supportive engineering student. These cases highlight the complex relationship between partner dynamics, teaching roles, perceived success, and self-efficacy development. Implications for supporting PSTs in engineering-integrated experiences are discussed.more » « less
An official website of the United States government

