skip to main content


Title: Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation Faster Algorithms and Positive Complexity Results
We focus on the problem of finding an optimal strategy for a team of players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In this setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that allows one for capping the number of profiles employed in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable.  more » « less
Award ID(s):
1901403
NSF-PAR ID:
10288482
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 38th International Conference on Machine Learning
Page Range / eLocation ID:
3164-3173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile. We can also cap the number of such profiles we allow in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a relatively simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable. 
    more » « less
  2. null (Ed.)
    We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile. We can also cap the number of such profiles we allow in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a relatively simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable. 
    more » « less
  3. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less
  4. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less
  5. null (Ed.)
    Often—for example in war games, strategy video games, and financial simulations—the game is given to us only as a black-box simulator in which we can play it. In these settings, since the game may have unknown nature action distributions (from which we can only obtain samples) and/or be too large to expand fully, it can be difficult to compute strategies with guarantees on exploitability. Recent work (Zhang and Sandholm 2020) resulted in a notion of certificate for extensive-form games that allows exploitability guarantees while not expanding the full game tree. However, that work assumed that the black box could sample or expand arbitrary nodes of the game tree at any time, and that a series of exact game solves (via, for example, linear programming) can be conducted to compute the certificate. Each of those two assumptions severely restricts the practical applicability of that method. In this work, we relax both of the assumptions. We show that high-probability certificates can be obtained with a black box that can do nothing more than play through games, using only a regret minimizer as a subroutine. As a bonus, we obtain an equilibrium-finding algorithm with ~O (1= p T) convergence rate in the extensive-form game setting that does not rely on a sampling strategy with lower-bounded reach probabilities (which MCCFR assumes). We demonstrate experimentally that, in the black-box setting, our methods are able to provide nontrivial exploitability guarantees while expanding only a small fraction of the game tree. 
    more » « less