skip to main content


Title: O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa
ABSTRACT Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs. IMPORTANCE During chronic infection, several factors contribute to the biogeography of microbial communities. Heterogeneous populations of Pseudomonas aeruginosa form aggregates in cystic fibrosis airways; however, the impact of this population heterogeneity on spatial organization and aggregate assembly is not well understood. In this study, we found that changes in O-specific antigen determine the spatial organization of P. aeruginosa cells by altering the relative cell surface hydrophobicity. This finding suggests a role for O-antigen in regulating P. aeruginosa aggregate size and shape in cystic fibrosis airways.  more » « less
Award ID(s):
1806606
NSF-PAR ID:
10288485
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Trent, M. Stephen
Date Published:
Journal Name:
mBio
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Van_Tyne, Daria (Ed.)
    ABSTRACT

    Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality.Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e., bacteriocins produced byP. aeruginosa, are phage-tail-like antimicrobials. R-pyocins have potential as antimicrobials, however, recent research suggests the diversity ofP. aeruginosavariants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested the R2-pyocin susceptibility of 139P.aeruginosavariants from 17 sputum samples of 7 CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. There was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.

    IMPORTANCE

    Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistantPseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity ofP. aeruginosapopulations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.

     
    more » « less
  2. Introduction

    Chronic lung infection due to bacterial biofilms is one of the leading causes of mortality in cystic fibrosis (CF) patients. Among many species colonizing the lung airways,Pseudomonas aeruginosaandStaphylococcus aureusare two virulent pathogens involved in mechanically robust biofilms that are difficult to eradicate using airway clearance techniques like lung lavage. To remove such biological materials, glycoside hydrolase-based compounds are commonly employed for targeting and breaking down the biofilm matrix, and subsequently increasing cell susceptibility to antibiotics.

    Materials and methods

    In this study, we evaluate the effects of N-acetyl cysteine (NAC) and Cysteamine (CYST) in disrupting interfacial bacterial films, targeting different components of the extracellular polymeric substances (EPS). We characterize the mechanics and structural integrity of the interfacial bacterial films using pendant drop elastometry and scanning electron microscopy.

    Results and discussion

    Our results show that the film architectures are compromised by treatment with disrupting agents for 6 h, which reduces film elasticity significantly. These effects are profound in the wild type and mucoidP. aeruginosa, compared toS. aureus. We further assess the effects of competition and cooperation betweenS. aureusandP. aeruginosaon the mechanics of composite interfacial films. Films ofS. aureusand wild-typeP. aeruginosacocultures lose mechanical strength while those ofS. aureusand mucoidP. aeruginosaexhibit improved storage modulus. Treatment with NAC and CYST reduces the elastic property of both composite films, owing to the drugs’ ability to disintegrate their EPS matrix. Overall, our results provide new insights into methods for assessing the efficacy of mucolytic agents against interfacial biofilms relevant to cystic fibrosis infection.

     
    more » « less
  3. Abstract

    Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specificallyPseudomonas aeruginosabiofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo‐antimicrobial peptide Gaduscidin‐1 (Gad‐1) eradicates establishedP. aeruginosabiofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad‐1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad‐1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.

     
    more » « less
  4. A model for antibiotic accumulation in bacterial biofilm microcolonies utilizing heterogenous porosity and attachment site profiles replicated the periphery sequestration reported in prior experimental studies onPseudomonas aeruginosa PAO1biofilm cell clusters. TheseP. aeruginosacell clusters are in vitro models of the chronicP. aeruginosainfections in cystic fibrosis patients which display recalcitrance to antibiotic treatments, leading to exacerbated morbidity and mortality. This resistance has been partially attributed to periphery sequestration, where antibiotics fail to penetrate biofilm cell clusters. The physical phenomena driving this periphery sequestration have not been definitively established. This paper introduces mathematical models to account for two proposed physical phenomena driving periphery sequestration: biofilm matrix attachment and volume-exclusion due to variable biofilm porosity. An antibiotic accumulation model which incorporated these phenomena better fit observed periphery sequestration data compared to previous models.

     
    more » « less
  5. Background

    Chronic rhinosinusitis (CRS) is a significant manifestation of cystic fibrosis (CF) with wide‐ranging symptom and disease severity. The goal of the study was to determine clinical variables that correlate with outcome measures of disease severity.

    Methods

    A prospective, longitudinal, observational study of 33 adults with symptomatic CRS treated in a CF‐focused otolaryngology clinic was performed. Symptom severity, the presence of rhinosinusitis exacerbations, and endoscopic appearance were assessed, and regression analysis was used to determine clinical predictors of disease outcome.

    Results

    Thirty‐three adults with CF‐CRS were included in the study and followed for a mean of 15 months. Rhinosinusitis exacerbations occurred in 61% of participants during the study, and female sex increased the odds of presenting with an exacerbation visit. Sinus disease exacerbations were associated with an odds ratio of 2.07 for presenting with a pulmonary exacerbation at the next visit. CF‐related diabetes was found to be associated with worse symptoms and endoscopic appearance. Infection withStaphylococcus aureuspredicted worsening of symptoms, whereas infections withPseudomonas aeruginosaimproved over time. Allergic rhinitis was associated with worse endoscopic appearance, and nasal steroid use was associated with improved endoscopic appearance.

    Conclusion

    Sex, CF‐related diabetes, sinonasal infection status, allergic rhinitis, and nasal steroid use may all modulate severity of CF‐CRS in adults. Sinusitis exacerbation may be a precursor to pulmonary exacerbation.

     
    more » « less