skip to main content

Title: Stable Haptic Teleoperation of UAVs via Small L2 Gain and Control Barrier Functions
We present a novel haptic teleoperation approach that considers not only the safety but also the stability of a teleoperation system. Specifically, we build upon previous work on haptic shared control, which generates a reference haptic feedback that helps the human operator to safely navigate the robot but without taking away their control authority. Crucially, in this approach the force rendered to the user is not directly reflected in the motion of the robot (which is still directly controlled by the user); however, previous work in the area neglected to consider the possible instabilities in feedback loop generated by a user that over-responds to the haptic force. In this paper we introduce a differential constraint on the rendered force that makes the system finite-gain L2 stable; the constraint results in a Quadratically Constrained Quadratic Program (QCQP), for which we provide a closed-form solution. Our constraint is related to, but less restrictive than, the typical passivity constraint used in previous literature. We conducted an experimental simulation in which a human operator flies a UAV near an obstacle to evaluate the proposed method.
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. In remote applications that mandate human supervision, shared control can prove vital by establishing a harmonious balance between the high-level cognition of a user and the low-level autonomy of a robot. Though in practice, achieving this balance is a challenging endeavor that largely depends on whether the operator effectively interprets the underlying shared control. Inspired by recent works on using immersive technologies to expose the internal shared control, we develop a virtual reality system to visually guide human-in-the-loop manipulation. Our implementation of shared control teleoperation employs end effector manipulability polytopes, which are geometrical constructs that embed joint limit and environmentalmore »constraints. These constructs capture a holistic view of the constrained manipulator’s motion and can thus be visually represented as feedback for users on their operable space of movement. To assess the efficacy of our proposed approach, we consider a teleoperation task where users manipulate a screwdriver attached to a robotic arm’s end effector. A pilot study with prospective operators is first conducted to discern which graphical cues and virtual reality setup are most preferable. Feedback from this study informs the final design of our virtual reality system, which is subsequently evaluated in the actual screwdriver teleoperation experiment. Our experimental findings support the utility of using polytopes for shared control teleoperation, but hint at the need for longer-term studies to garner their full benefits as virtual guides.« less
  2. Haptic feedback can render real-time force interactions with computer simulated objects. In several telerobotic applications, it is desired that a haptic simulation reflects a physical task space or interaction accurately. This is particularly true when excessive applied force can result in disastrous consequences, as with the case of robot-assisted minimally invasive surgery (RMIS) and tissue damage. Since force cannot be directly measured in RMIS, non-contact methods are desired. A promising direction of non-contact force estimation involves the primary use of vision sensors to estimate deformation. However, the required fidelity of non-contact force rendering of deformable interaction to maintain surgical operatormore »performance is not well established. This work attempts to empirically evaluate the degree to which haptic feedback may deviate from ground truth yet result in acceptable teleoperated performance in a simulated RMIS-based palpation task. A preliminary user-study is conducted to verify the utility of the simulation platform, and the results of this work have implications in haptic feedback for RMIS and inform guidelines for vision-based tool-tissue force estimation. An adaptive thresholding method is used to collect the minimum and maximum tolerable errors in force orientation and magnitude of presented haptic feedback to maintain sufficient performance.« less
  3. Users play an integral role in the performance of many robotic systems, and robotic systems must account for differences in users to improve collaborative performance. Much of the work in adapting to users has focused on designing teleoperation controllers that adjust to extrinsic user indicators such as force, or intent, but do not adjust to intrinsic user qualities. In contrast, the Human-Robot Interaction community has extensively studied intrinsic user qualities, but results may not rapidly be fed back into autonomy design. Here we provide foundational evidence for a new strategy that augments current shared control, and provide a mechanism tomore »directly feed back results from the HRI community into autonomy design. Our evidence is based on a study examining the impact of the user quality “locus of control” on telepresence robot performance. Our results support our hypothesis that key user qualities can be inferred from human-robot interactions (such as through path deviation or time to completion) and that switching or adaptive autonomies might improve shared control performance.« less
  4. We describe a novel haptic interface designed specifically for the teleoperation of extensible continuum manipulators. The proposed device is based off of, and extends to the haptic domain, a kinematically similar input device for continuum manipulators called the MiniOct. This letter describes the physical design of the new device, the method of creating impedance-type haptic feedback to users, and some of the requirements for implementing this device in a bilateral teleoperation scheme for continuum robots. We report a series of initial experiments to validate the operation of the system, including simulated and real-time conditions. The experimental results show that amore »user can identify the direction of planar obstacles from the feedback for both virtual and physical environments. Finally, we discuss the challenges for providing feedback to an operator about the state of a teleoperated continuum manipulator.« less
  5. In this paper, we study the effects of delays in a mimicry-control robot teleoperation interface which involves a user moving their arms to directly show the robot how to move and the robot follows in real time. Unlike prior work considering delays in other teleoperation systems, we consider delays due to robot slowness in addition to latency in the onset of movement commands. We present a human-subjects study that shows how different amounts and types of delays have different effects on task performance. We compare the movements under different delays to reveal the strategies that operators use to adapt tomore »delay conditions and to explain performance differences. Our results show that users can quickly develop strategies to adapt to slowness delays but not onset latency delays. We discuss the implications of our results for the future development of methods designed to mitigate the effects of delays.« less