skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on July 5, 2024

Title: Fabric-Silicone Composite Haptic Muscles for Sensitive Wearable Force Feedback
Robot teleoperation is an emerging field of study with wide applications in exploration, manufacturing, and healthcare, because it allows users to perform complex remote tasks while remaining distanced and safe. Haptic feedback offers an immersive user experience and expands the range of tasks that can be accomplished through teleoperation. In this paper, we present a novel wearable haptic feedback device for a teleoperation system that applies kinesthetic force feedback to the fingers of a user. The proposed device, called a ‘haptic muscle’, is a soft pneumatic actuator constructed from a fabric-silicone composite in a toroidal structure. We explore the requirements of the ideal haptic feedback mechanism, construct several haptic muscles using different materials, and experimentally determine their dynamic pressure response as well as sensitivity (their ability to communicate small changes in haptic feedback). Finally, we integrate the haptic muscles into a data glove and a teleoperation system and perform several user tests. Our results show that most users could detect detect force changes as low as 3% of the working range of the haptic muscles. We also find that the haptic feedback causes users to apply up to 52% less force on an object while handling soft and fragile objects with a teleoperation system.  more » « less
Award ID(s):
2024802 1922761
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments
Page Range / eLocation ID:
33 to 41
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physical interaction between humans and robots can help robots learn to perform complex tasks. The robot arm gains information by observing how the human kinesthetically guides it throughout the task. While prior works focus on how the robot learns, it is equally important that this learning is transparent to the human teacher. Visual displays that show the robot’s uncertainty can potentially communicate this information; however, we hypothesize that visual feedback mechanisms miss out on the physical connection between the human and robot. In this work we present a soft haptic display that wraps around and conforms to the surface of a robot arm, adding a haptic signal at an existing point of contact without significantly affecting the interaction. We demonstrate how soft actuation creates a salient haptic signal while still allowing flexibility in device mounting. Using a psychophysics experiment, we show that users can accurately distinguish inflation levels of the wrapped display with an average Weber fraction of 11.4%. When we place the wrapped display around the arm of a robotic manipulator, users are able to interpret and leverage the haptic signal in sample robot learning tasks, improving identification of areas where the robot needs more training and enabling the user to provide better demonstrations. See videos of our device and user studies here: 
    more » « less
  2. We describe a novel haptic interface designed specifically for the teleoperation of extensible continuum manipulators. The proposed device is based off of, and extends to the haptic domain, a kinematically similar input device for continuum manipulators called the MiniOct. This letter describes the physical design of the new device, the method of creating impedance-type haptic feedback to users, and some of the requirements for implementing this device in a bilateral teleoperation scheme for continuum robots. We report a series of initial experiments to validate the operation of the system, including simulated and real-time conditions. The experimental results show that a user can identify the direction of planar obstacles from the feedback for both virtual and physical environments. Finally, we discuss the challenges for providing feedback to an operator about the state of a teleoperated continuum manipulator. 
    more » « less
  3. null (Ed.)
    We present a novel haptic teleoperation approach that considers not only the safety but also the stability of a teleoperation system. Specifically, we build upon previous work on haptic shared control, which generates a reference haptic feedback that helps the human operator to safely navigate the robot but without taking away their control authority. Crucially, in this approach the force rendered to the user is not directly reflected in the motion of the robot (which is still directly controlled by the user); however, previous work in the area neglected to consider the possible instabilities in feedback loop generated by a user that over-responds to the haptic force. In this paper we introduce a differential constraint on the rendered force that makes the system finite-gain L2 stable; the constraint results in a Quadratically Constrained Quadratic Program (QCQP), for which we provide a closed-form solution. Our constraint is related to, but less restrictive than, the typical passivity constraint used in previous literature. We conducted an experimental simulation in which a human operator flies a UAV near an obstacle to evaluate the proposed method. 
    more » « less
  4. Abstract

    ROV operations are mainly performed via a traditional control kiosk and limited data feedback methods, such as the use of joysticks and camera view displays equipped on a surface vessel. This traditional setup requires significant personnel on board (POB) time and imposes high requirements for personnel training. This paper proposes a virtual reality (VR) based haptic-visual ROV teleoperation system that can substantially simplify ROV teleoperation and enhance the remote operator's situational awareness.

    This study leverages the recent development in Mixed Reality (MR) technologies, sensory augmentation, sensing technologies, and closed-loop control, to visualize and render complex underwater environmental data in an intuitive and immersive way. The raw sensor data will be processed with physics engine systems and rendered as a high-fidelity digital twin model in game engines. Certain features will be visualized and displayed via the VR headset, whereas others will be manifested as haptic and tactile cues via our haptic feedback systems. We applied a simulation approach to test the developed system.

    With our developed system, a high-fidelity subsea environment is reconstructed based on the sensor data collected from an ROV including the bathymetric, hydrodynamic, visual, and vehicle navigational measurements. Specifically, the vehicle is equipped with a navigation sensor system for real-time state estimation, an acoustic Doppler current profiler for far-field flow measurement, and a bio-inspired artificial literal-line hydrodynamic sensor system for near-field small-scale hydrodynamics. Optimized game engine rendering algorithms then visualize key environmental features as augmented user interface elements in a VR headset, such as color-coded vectors, to indicate the environmental impact on the performance and function of the ROV. In addition, augmenting environmental feedback such as hydrodynamic forces are translated into patterned haptic stimuli via a haptic suit for indicating drift-inducing flows in the near field. A pilot case study was performed to verify the feasibility and effectiveness of the system design in a series of simulated ROV operation tasks.

    ROVs are widely used in subsea exploration and intervention tasks, playing a critical role in offshore inspection, installation, and maintenance activities. The innovative ROV teleoperation feedback and control system will lower the barrier for ROV pilot jobs.

    more » « less
  5. We propose a haptic device that alters the perceived softness of real rigid objects without requiring to instrument the objects. Instead, our haptic device works by restricting the user's fingerpad lateral deformation via a hollow frame that squeezes the sides of the fingerpad. This causes the fingerpad to become bulgier than it originally was—when users touch an object's surface with their now-restricted fingerpad, they feel the object to be softer than it is. To illustrate the extent of softness illusion induced by our device, touching the tip of a wooden chopstick will feel as soft as a rubber eraser. Our haptic device operates by pulling the hollow frame using a motor. Unlike most wearable haptic devices, which cover up the user's fingerpad to create force sensations, our device creates softness while leaving the center of the fingerpad free, which allows the users to feel most of the object they are interacting with. This makes our device a unique contribution to altering the softness of everyday objects, creating “buttons” by softening protrusions of existing appliances or tangibles, or even, altering the softness of handheld props for VR. Finally, we validated our device through two studies: (1) a psychophysics study showed that the device brings down the perceived softness of any object between 50A-90A to around 40A (on Shore A hardness scale); and (2) a user study demonstrated that participants preferred our device for interactive applications that leverage haptic props, such as making a VR prop feel softer or making a rigid 3D printed remote control feel softer on its button. 
    more » « less