skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent progress of high-entropy materials for energy storage and conversion
The emergence of high-entropy materials (HEMs) with their excellent mechanical properties, stability at high temperatures, and high chemical stability is poised to yield new advancement in the performance of energy storage and conversion technologies. This review covers the recent developments in catalysis, water splitting, fuel cells, batteries, supercapacitors, and hydrogen storage enabled by HEMs covering metallic, oxide, and non-oxide alloys. Here, first, the primary rules for the proper selection of the elements and the formation of a favorable single solid solution phase in HEMs are defined. Furthermore, recent developments in different fields of energy conversion and storage achieved by HEMs are discussed. Higher electrocatalytic and catalytic activities with longer cycling stability and durability compared to conventional noble metal-based catalysts are reported for high-entropy materials. In electrochemical energy storage systems, high-entropy oxides and alloys have shown superior performance as anode and cathode materials with long cycling stability and high capacity retention. Also, when used as metal hydrides for hydrogen storage, remarkably high hydrogen storage capacity and structural stability are observed for HEMs. In the end, future directions and new energy-related technologies that can be enabled by the application of HEMs are outlined.  more » « less
Award ID(s):
1809439
PAR ID:
10288569
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
2
ISSN:
2050-7488
Page Range / eLocation ID:
782 to 823
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-entropy materials (HEMs) constitute a revolutionary class of materials that have garnered significant attention in the field of materials science, exhibiting extraordinary properties in the realm of energy storage. These equimolar multielemental compounds have demonstrated increased charge capacities, enhanced ionic conductivities, and a prolonged cycle life, attributed to their structural stability. In the anode, transitioning from the traditional graphite (372 mAh g−1) to an HEM anode can increase capacity and enhance cycling stability. For cathodes, lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) can be replaced with new cathodes made from HEMs, leading to greater energy storage. HEMs play a significant role in electrolytes, where they can be utilized as solid electrolytes, such as in ceramics and polymers, or as new high-entropy liquid electrolytes, resulting in longer cycling life, higher ionic conductivities, and stability over wide temperature ranges. The incorporation of HEMs in metal–air batteries offers methods to mitigate the formation of unwanted byproducts, such as Zn(OH)4 and Li2CO3, when used with atmospheric air, resulting in improved cycling life and electrochemical stability. This review examines the basic characteristics of HEMs, with a focus on the various applications of HEMs for use as different components in lithium-ion batteries. The electrochemical performance of these materials is examined, highlighting improvements such as specific capacity, stability, and a longer cycle life. The utilization of HEMs in new anodes, cathodes, separators, and electrolytes offers a promising path towards future energy storage solutions with higher energy densities, improved safety, and a longer cycling life. 
    more » « less
  2. Recent advancements in high-entropy alloys (HEAs) and high-entropy materials (HEMs) show promising potential for different fields of applications. The emergence of HEAs and HEMs has gained significant interest for their exciting nature and properties. As they consist of five or more elements in considerable amounts, properties vary depending on the synergistic effect of combinations of elements. By selecting proper elements and manufacturing methods, better properties can be tuned. Although many unique behaviors of HEAs and HEMs are reported due to their mixing entropy, sluggish diffusion, severe lattice distortion, and multi-metallic cocktail effects, it is necessary to summarize the data to map their feasibility and potential. For example, the combined properties of high thermal stability, thermal fatigue, creep resistance, higher stiffness, and better corrosion resistance for elevated-temperature environments in aerospace applications are pursued. Moreover, gaining the environmental compatibility and longevity of service-life-oxidation behavior of these materials is one of the crucial aspects and, hence, has been recently explored. Therefore, this Research Update aims at summarizing the recent developments and findings in oxidation behavior and highlighting the challenges and controversies for future research perspectives, particularly, on the sustainability for different applications. Moreover, besides the bulk structure, the performance of the HEAs/HEMs coatings is also reviewed. 
    more » « less
  3. High‐entropy materials (HEMs) represent a revolutionary class of materials that have garnered significant attention in the field of materials science due to their extraordinary properties in diverse fields of applications such as catalysis and electrochemistry. The past decade has witnessed a substantial increase in the study of these materials, exploring new synthesis routes and compositions. What began as the synthesis of high‐entropy alloys has expanded to encompass several classes of HEMs such as oxides, hydroxides, sulfides, nitrides, and carbides, among others. Several synthesis methods have been developed to produce these materials. This review therefore highlights the fundamental concepts of HEMs, including their core effects, with a major emphasis on their scalable synthesis routes. The advantages and drawbacks of these methods are also discussed. As HEMs transition from the lab to large‐scale production, there is a growing need for cost‐effective and scalable synthesis methods with high material yield suitable for a variety of applications like hydrogen storage, catalysis, batteries, supercapacitors, and fuel cells. Hence, this review serves as an introduction to scalable synthesis routes based on crystal structure, desired elements, synthesis times, and equipment costs. 
    more » « less
  4. Abstract Solid‐state batteries (SSBs) are competitive contenders for energy storage due to their inherent safety and high energy. However, the lack of an appropriate anode has hindered their development. Graphite and lithium metal are widely used anode materials, but graphite suffers from a low capacity, whereas lithium metal presents severe dendrite and reactivity challenges. Herein, the promising performance of micro‐sized alloys is demonstrated as high‐capacity and long‐cycling anodes for SSBs. Using antimony as a model anode, its full theoretical capacity (660 mAh g−1), high‐rate capability (3 A g−1), and long cycling life (1000–2000 cycles) is achieved at room temperature. Comparative studies further reveal an overlooked “micro‐size effect”, where micro‐sized alloys establish more efficient electron/ion conduction pathways, significantly exceeding their nano‐sized counterparts. This micro‐size effect challenges the conventional belief that nano‐sized alloys always outperform micro‐sized ones. Based on this discovery, similarly high performance of other micro‐alloys (lead and bismuth) in SSBs is further demonstrated. Given the additional benefits of easy synthesis, low cost, high tap density, and high stability, micro‐sized alloys hold great promise as excellent anode candidates for SSBs. 
    more » « less
  5. Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not currently limited to pure metals and conventional metallic alloys, and a wide range of materials are processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanism of geological and astronomical phenomena and the origin of life. Keywords: Severe plastic deformation (SPD); Nanostructured materials; Ultrafine grained (UFG) materials; Gradient-structured materials, High-pressure torsion (HPT) 
    more » « less