skip to main content

Title: Genetics and the Question of Purity in Cutthroat Trout Restoration
As molecular techniques become more advanced, scientists and practitioners are calling for restoration to leverage genetic and genomic approaches. We address the role of genetics in the restoration and conservation of cutthroat trout in the western U.S., where new genetic insights have upended previous assumptions about trout diversity and distribution. Drawing on a series of examples, we examine how genetically pure trout populations are identified, protected, and produced through restoration practices. In landscapes that have been profoundly impacted by human activities, genetics can offer seemingly objective metrics for restoration projects. Our case studies, however, indicate that (1) genetic purity is fragile and contingent, with notions of what genetics are “pure” for a given species or subspecies continually changing, and (2) restoration focused on achieving “genetically pure” native populations can deliberately or inadvertently obscure the socio-ecological histories of particular sites and species, even as (3) many “genetically pure” trout populations have endured on the landscape as a result of human modifications such as roads and dams. In addition to raising conceptual questions, designations of genetic purity influence policy. These include tensions between restoring connectivity and restoring genetic purity, influencing Wild and Scenic River Act designations, and the securing of water rights. more » Cutthroat trout restoration would benefit from adopting a broader, more holistic framework rather than fixating exclusively or primarily on genetic purity and hybridization threats. « less
Award ID(s):
Publication Date:
Journal Name:
Restoration Ecology
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in genetics and genomics have raised new questions in trout restoration and management, specifically about species identity and purity, which fish to value, and where these fish belong. This paper examines how this molecular turn in fisheries management is influencing wild and native trout policy in Colorado. Examples from two small Colorado watersheds, Bear Creek and Sand Creek, illustrate how framing trout as genetic bodies can guide managers to care for or kill trout populations in the interest of rectifying decades of genetic disruption caused by human activity. While trout management has typically relied on human intervention, the turn to genetic science is prompting new classifications of lineage and taxa, altering long-standing conservation priorities, and reorienting the manipulation of biological processes such as reproduction and dispersal. As a result, other social and ecological factors may be pushed to the margins of management decisions. These changes warrant greater conversation about the consequences of molecular analyses and the values embedded in trout science and conservation more broadly.
  2. The cutthroat trout (Oncorhynchus clarkii (Richardson, 1836)) is one of the most widely distributed species of freshwater fish in western North America. Occupying a diverse range of habitats, they exhibit significant phenotypic variability that is often recognized by intraspecific taxonomy. Recent molecular phylogenies have described phylogenetic diversification across cutthroat trout populations, but no study has provided a range-wide morphological comparison of taxonomic divisions. In this study, we used linear- and geometric-based morphometrics to determine if phylogenetic and subspecies divisions correspond to morphological variation in cutthroat trout, using replicate populations from throughout the geographic range of the species. Our data indicate significant morphological divergence of intraspecific categories in some, but not all, cutthroat trout subspecies. We also compare morphological distance measures with distance measures of mtDNA sequence divergence. DNA sequence divergence was positively correlated with morphological distance measures, indicating that morphologically more similar subspecies have lower sequence divergence in comparison to morphologically distant subspecies. Given these results, integrating both approaches to describing intraspecific variation may be necessary for developing a comprehensive conservation plan in wide-ranging species.
  3. Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world’s forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversitymore »to future global change.

    « less
  4. Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions.
  5. Abstract. Watershed-scale stream temperature models are often one-dimensional because they require fewer data and are more computationally efficient than two- or three-dimensional models. However, one-dimensional models assume completely mixed reaches and ignore small-scale spatial temperature variability, which may create temperature barriers or refugia for cold-water aquatic species. Fine spatial- and temporal-resolution stream temperature monitoring provides information to identify river features with increased thermal variability. We used distributed temperature sensing (DTS) to observe small-scale stream temperature variability, measured as a temperature range through space and time, within two 400 m reaches in summer 2015 in Nevada's East Walker and main stem Walker rivers. Thermal infrared (TIR) aerial imagery collected in summer 2012 quantified the spatial temperature variability throughout the Walker Basin. We coupled both types of high-resolution measured data with simulated stream temperatures to corroborate model results and estimate the spatial distribution of thermal refugia for Lahontan cutthroat trout and other cold-water species. Temperature model estimates were within the DTS-measured temperature ranges 21 % and 70 % of the time for the East Walker River and main stem Walker River, respectively, and within TIR-measured temperatures 17 %, 5 %, and 5 % of the time for the East Walker, West Walker, and main stem Walker rivers, respectively. DTS, TIR, and modeledmore »stream temperatures in the main stem Walker River nearly always exceeded the 21 ∘C optimal temperature threshold for adult trout, usually exceeded the 24 ∘C stress threshold, and could exceed the 28 ∘C lethal threshold for Lahontan cutthroat trout. Measured stream temperature ranges bracketed ambient river temperatures by −10.1 to +2.3 ∘C in agricultural return flows, −1.2 to +4 ∘C at diversions, −5.1 to +2 ∘C in beaver dams, and −4.2 to 0 ∘C at seeps. To better understand the role of these river features on thermal refugia during warm time periods, the respective temperature ranges were added to simulated stream temperatures at each of the identified river features. Based on this analysis, the average distance between thermal refugia in this system was 2.8 km. While simulated stream temperatures are often too warm to support Lahontan cutthroat trout and other cold-water species, thermal refugia may exist to improve habitat connectivity and facilitate trout movement between spawning and summer habitats. Overall, high-resolution DTS and TIR measurements quantify temperature ranges of refugia and augment process-based modeling.« less