High-dimensional linear models with endogenous variables play an increasingly important role in the recent econometric literature. In this work, we allow for models with many endogenous variables and make use of many instrumental variables to achieve identification. Because of the high-dimensionality in the structural equation, constructing honest confidence regions with asymptotically correct coverage is non-trivial. Our main contribution is to propose estimators and confidence regions that achieve this goal. Our approach relies on moment conditions that satisfy the usual instrument orthogonality condition but also have an additional orthogonality property with respect to specific linear combinations of the endogenous variables which are treated as nuisance parameters. We propose new pivotal procedures for estimating the high-dimensional nuisance parameters which appear in our formulation. We use a multiplier bootstrap procedure to compute critical values and establish its validity for achieving simultaneously valid confidence regions for a potentially high-dimensional set of endogenous variable coefficients.
more »
« less
High-dimensional empirical likelihood inference
Summary High-dimensional statistical inference with general estimating equations is challenging and remains little explored. We study two problems in the area: confidence set estimation for multiple components of the model parameters, and model specifications tests. First, we propose to construct a new set of estimating equations such that the impact from estimating the high-dimensional nuisance parameters becomes asymptotically negligible. The new construction enables us to estimate a valid confidence region by empirical likelihood ratio. Second, we propose a test statistic as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the model specification. Our theory establishes the validity of the proposed empirical likelihood approaches, accommodating over-identification and exponentially growing data dimensionality. Numerical studies demonstrate promising performance and potential practical benefits of the new methods.
more »
« less
- Award ID(s):
- 1934962
- PAR ID:
- 10288767
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 108
- Issue:
- 1
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- 127 to 147
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we propose a flexible nested error regression small area model with high-dimensional parameter that incorporates heterogeneity in regression coefficients and variance components. We develop a new robust small area-specific estimating equations method that allows appropriate pooling of a large number of areas in estimating small area-specific model parameters. We propose a parametric bootstrap and jackknife method to estimate not only the mean squared errors but also other commonly used uncertainty measures such as standard errors and coefficients of variation. We conduct both model-based and design-based simulation experiments and real-life data analysis to evaluate the proposed methodology.more » « less
-
null (Ed.)We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.more » « less
-
null (Ed.)We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.more » « less
-
null (Ed.)We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.more » « less
An official website of the United States government

