skip to main content

Title: Oral Candida Predicts Streptococcus mutans Emergence in Underserved US Infants
Despite the cariogenic role of Candida suggested from recent studies, oral Candida acquisition in children at high risk for early childhood caries (ECC) and its association with cariogenic bacteria Streptococcus mutans remain unclear. Although ECC disproportionately afflicts socioeconomically disadvantaged and racial-minority children, microbiological studies focusing on the underserved group are scarce. Our prospective cohort study examined the oral colonization of Candida and S. mutans among 101 infants exclusively from a low-income and racial-minority background in the first year of life. The Cox hazard proportional model was fitted to assess factors associated with the time to event of the emergence of oral Candida and S. mutans. Oral Candida colonization started as early as 1 wk among 13% of infants, increased to 40% by 2 mo, escalated to 48% by 6 mo, and remained the same level until 12 mo. S. mutans in saliva was detected among 20% infants by 12 mo. The emergence of S. mutans by year 1 was 3.5 times higher (hazard ratio [HR], 3.5; confidence interval [CI], 1.1–11.3) in infants who had early colonization of oral Candida compared to those who were free of oral Candida ( P = 0.04) and 3 times higher (HR, 3.0; CI, 1.3–6.9) more » among infants whose mother had more than 3 decayed teeth ( P = 0.01), even after adjusting demographics, feeding, mother’s education, and employment status. Infants’ salivary S. mutans abundance was positively correlated with infants’ Candida albicans ( P < 0.01) and Candida krusei levels ( P < 0.05). Infants’ oral colonization of C. albicans was positively associated with mother’s oral C. albicans carriage and education ( P < 0.01) but negatively associated with mother’s employment status ( P = 0.01). Future studies are warranted to examine whether oral Candida modulates the oral bacterial community as a whole to become cariogenic during the onset and progression of ECC, which could lead to developing novel ECC predictive and preventive strategies from a fungal perspective. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1934962
Publication Date:
NSF-PAR ID:
10288784
Journal Name:
Journal of Dental Research
Page Range or eLocation-ID:
002203452110123
ISSN:
0022-0345
Sponsoring Org:
National Science Foundation
More Like this
  1. Early childhood caries (ECC) is not only the most common chronic childhood disease but also disproportionately affects underserved populations. Of those, children living in Thailand have been found to have high rates of ECC and severe ECC. Frequently, the cause of ECC is blamed on a handful of cariogenic organisms, such as Streptococcus mutans and Streptococcus sobrinus . However, ECC is a multifactorial disease that results from an ecological shift in the oral cavity from a neutral pH (~7.5) to an acidic pH (<5.5) environment influenced by the host individual’s biological, socio-behavioral, and lifestyle factors. Currently, there is a lack of understanding of how risk factors at various levels influence the oral health of children at risk. We applied a statistical machine learning approach for multimodal data integration (parallel and hierarchical) to identify caries-related multiplatform factors in a large cohort of mother-child dyads living in Chiang Mai, Thailand (N=177). Whole saliva (1 mL) was collected from each individual for DNA extraction and 16S rRNA sequencing. A set of maternal and early childhood factors were included in the data analysis. Significantly, vaginal delivery, preterm birth, and frequent sugary snacking were found to increase the risk for ECC. The salivary microbial diversitymore »was significantly different in children with ECC or without ECC. Results of linear discriminant analysis effect size (LEfSe) analysis of the microbial community demonstrated that S. mutans , Prevotella histicola , and Leptotrichia hongkongensis were significantly enriched in ECC children. Whereas Fusobacterium periodonticum was less abundant among caries-free children, suggesting its potential to be a candidate biomarker for good oral health. Based on the multimodal data integration and statistical machine learning models, the study revealed that the mode of delivery and snack consumption outrank salivary microbiome in predicting ECC in Thai children. The biological and behavioral factors may play significant roles in the microbial pathobiology of ECC and warrant further investigation.« less
  2. Untreated tooth decays affect nearly one third of the world and is the most prevalent disease burden among children. The disease progression of tooth decay is multifactorial and involves a prolonged decrease in pH, resulting in the demineralization of tooth surfaces. Bacterial species that are capable of fermenting carbohydrates contribute to the demineralization process by the production of organic acids. The combined use of machine learning and 16s rRNA sequencing offers the potential to predict tooth decay by identifying the bacterial community that is present in an individual’s oral cavity. A few recent studies have demonstrated machine learning predictive modeling using 16s rRNA sequencing of oral samples, but they lack consideration of the multifactorial nature of tooth decay, as well as the role of fungal species within their models. Here, the oral microbiome of mother–child dyads (both healthy and caries-active) was used in combination with demographic–environmental factors and relevant fungal information to create a multifactorial machine learning model based on the LASSO-penalized logistic regression. For the children, not only were several bacterial species found to be caries-associated ( Prevotella histicola, Streptococcus mutans , and Rothia muciloginosa ) but also Candida detection and lower toothbrushing frequency were also caries-associated. Mothers enrolledmore »in this study had a higher detection of S. mutans and Candida and a higher plaque index. This proof-of-concept study demonstrates the significant impact machine learning could have in prevention and diagnostic advancements for tooth decay, as well as the importance of considering fungal and demographic–environmental factors.« less
  3. Abstract Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization in U.S. infants, but also a major risk factor for asthma development. While emerging evidence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome (species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and clinically-meaningful endotypes: A) clinical classic microbiome M. nonliquefaciens inflammation IFN-intermediate , B) clinical atopic microbiome S. pneumoniae / M. catarrhalis inflammation IFN-high , C) clinical severe microbiome mixed inflammation IFN-low , and D) clinical non-atopic microbiome M.catarrhalis inflammation IL-6 . Particularly, compared with endotype A infants, endotype B infants—who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S. pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response—had a significantly higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08–21.9; P = 0.002). Our findings provide an evidence base for the early identification of high-risk children during a critical period of airway development.
  4. Invasive candidiasis (IC) remains as a major cause of morbidity and mortality in critically ill patients. Amphotericin B (AmB) is one of the most effective antifungal agents commonly used to treat this infection. However, it induces severe side effects such as nephrotoxicity, cardiac alterations, nausea, fever, and liver damage. The utilization of drug delivery systems has been explored to overcome these limitations. Several AmB lipid formulations have been developed and are currently available in the market. Although they have the ability to reduce the main side effects of free AmB, their high cost, necessity of repeated intravenous injections for successful treatment, and incidence of pulmonary toxicity have limited their use. In the last decades, alginate has gained significant interest in drug delivery applications as a cost-effective strategy to improve the safety and therapeutic effect of toxic drugs. In this work, the clinically relevant drug AmB was encapsulated into alginate microparticles using the emulsification/external gelation method. We hypothesize that this synthesis strategy may positively impact the antifungal efficacy of AmB-loaded MCPs toward Candida albicans cells while reducing the toxicity in human lung cells. To prove this hypothesis, the ability of the microplatform to disrupt the cellular membrane potential was tested andmore »its antifungal effectiveness toward Candida albicans cells was evaluated using the cell counting and plate count methods. Moreover, the toxicity of the microplatform in human lung cells was evaluated using CellTiter 96® AQueous cell viability assay and qualitative diffusion analysis of acridine orange. Our results demonstrated that the platform developed in this work was able to induce antifungal toxicity against Candida albicans yeast cells at the same level of free AmB with minimal toxicity to lung cells, which is one of the main side effects induced by commercial drug delivery systems containing AmB. Overall, our data provides convincing evidence about the effectiveness of the alginate-based microplatform toward Candida albicans cells. In addition, this vehicle may not require several infusions for a successful treatment while reducing the pulmonary toxic effect induced by commercial lipid formulations.« less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>