skip to main content


Title: TDCOSMO: VI. Distance measurements in time-delay cosmography under the mass-sheet transformation
Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, H 0 , independent of traditional distance ladder methodology. A current potential limitation of time-delay distance measurements is the mass-sheet transformation (MST), which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of H 0 . In this work we show that the standard method of addressing the MST in time-delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, D s / D ds , of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived H 0 under the assumption of the ΛCDM model. In this paper we show that the mass-sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae Type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence D s / D ds . With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological model-independent way. Hence model-independent distance measurements in time-delay cosmography under MSTs can be obtained.  more » « less
Award ID(s):
1907396
NSF-PAR ID:
10288790
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
652
ISSN:
0004-6361
Page Range / eLocation ID:
A7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong-lensing time delays enable the measurement of the Hubble constant ( H 0 ) independently of other traditional methods. The main limitation to the precision of time-delay cosmography is mass-sheet degeneracy (MSD). Some of the previous TDCOSMO analyses broke the MSD by making standard assumptions about the mass density profile of the lens galaxy, reaching 2% precision from seven lenses. However, this approach could potentially bias the H 0 measurement or underestimate the errors. For this work, we broke the MSD for the first time using spatially resolved kinematics of the lens galaxy in RXJ1131−1231 obtained from the Keck Cosmic Web Imager spectroscopy, in combination with previously published time delay and lens models derived from Hubble Space Telescope imaging. This approach allowed us to robustly estimate H 0 , effectively implementing a maximally flexible mass model. Following a blind analysis, we estimated the angular diameter distance to the lens galaxy D d  = 865 −81 +85 Mpc and the time-delay distance D Δt  = 2180 −271 +472 Mpc, giving H 0  = 77.1 −7.1 +7.3 km s −1 Mpc −1 – for a flat Λ cold dark matter cosmology. The error budget accounts for all uncertainties, including the MSD inherent to the lens mass profile and line-of-sight effects, and those related to the mass–anisotropy degeneracy and projection effects. Our new measurement is in excellent agreement with those obtained in the past using standard simply parametrized mass profiles for this single system ( H 0  = 78.3 −3.3 +3.4 km s −1 Mpc −1 ) and for seven lenses ( H 0  = 74.2 −1.6 +1.6 km s −1 Mpc −1 ), or for seven lenses using single-aperture kinematics and the same maximally flexible models used by us ( H 0  = 73.3 −5.8 +5.8 km s −1 Mpc −1 ). This agreement corroborates the methodology of time-delay cosmography. 
    more » « less
  2. Abstract We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $4784_{-248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII). 
    more » « less
  3. ABSTRACT

    Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ∼15 per cent precision.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0. 
    more » « less
  5. null (Ed.)
    Strong lensing time delays can measure the Hubble constant H 0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H 0 from the cosmic microwave background. However, without assumptions on the radial mass density profile – and relying exclusively on stellar kinematics to break the mass-sheet degeneracy – the precision drops to 8% with the current data obtained using the seven TDCOSMO lenses, which is insufficient to resolve the H 0 tension. With the addition of external information from 33 Sloan Lens ACS (SLACS) lenses, the precision improves to 5% if the deflectors of TDCOSMO and SLACS lenses are drawn from the same population. We investigate the prospect of improving the precision of time-delay cosmography without relying on mass profile assumptions to break the mass-sheet degeneracy. Our forecasts are based on a previously published hierarchical framework. With existing samples and technology, 3.3% precision on H 0 can be reached by adding spatially resolved kinematics of the seven TDCOSMO lenses. The precision improves to 2.5% with the further addition of kinematics for 50 nontime-delay lenses from SLACS and the Strong Lensing Legacy Survey. Expanding the samples to 40 time-delay and 200 nontime-delay lenses will improve the precision to 1.5% and 1.2%, respectively. Time-delay cosmography can reach sufficient precision to resolve the Hubble tension at 3–5 σ , without assumptions on the radial mass profile of lens galaxies. By obtaining this precision with and without external datasets, we will test the consistency of the samples and enable further improvements based on even larger future samples of time-delay and nontime-delay lenses (e.g., from the Rubin , Euclid , and Roman Observatories). 
    more » « less