skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Machine Learning Framework for Quantum Sampling of Highly-Constrained, Continuous Optimization Problems
In the recent years, there is a growing interest in using quantum computers for solving combinatorial optimization problems. In this work, we developed a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate quadratic unconstrained binary optimization (QUBO) problems by employing a binary variational autoencoder and a factorization machine. The factorization machine is trained as a low-dimensional, binary surrogate model for the continuous design space and sampled using various QUBO samplers. Using the D-Wave Advantage hybrid sampler and simulated annealing, we demonstrate that by repeated resampling and retraining of the factorization machine, our framework finds designs that exhibit figures of merit exceeding those of its training set. We showcase the framework’s performance on two inverse design problems by optimizing (i) thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering. This technique can be further scaled to leverage future developments in quantum optimization to solve advanced inverse design problems for science and engineering applications.  more » « less
Award ID(s):
2029553
PAR ID:
10288799
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combinatorial optimization problems prevail in engineering and industry. Some are NP-hard and thus become difficult to solve on edge devices due to limited power and computing resources. Quadratic Unconstrained Binary Optimization (QUBO) problem is a valuable emerging model that can formulate numerous combinatorial problems, such as Max-Cut, traveling salesman problems, and graphic coloring. QUBO model also reconciles with two emerging computation models, quantum computing and neuromorphic computing, which can potentially boost the speed and energy efficiency in solving combinatorial problems. In this work, we design a neuromorphic QUBO solver composed of a swarm of spiking neural networks (SNN) that conduct a population-based meta-heuristic search for solutions. The proposed model can achieve about x20 40 speedup on large QUBO problems in terms of time steps compared to a traditional neural network solver. As a codesign, we evaluate the neuromorphic swarm solver on a 40nm 25mW Resistive RAM (RRAM) Compute-in-Memory (CIM) SoC with a 2.25MB RRAM-based accelerator and an embedded Cortex M3 core. The collaborative SNN swarm can fully exploit the specialty of CIM accelerator in matrix and vector multiplications. Compared to previous works, such an algorithm-hardware synergized solver exhibits advantageous speed and energy efficiency for edge devices. 
    more » « less
  2. Quadratic Unconstrained Binary Optimization (QUBO) problem becomes an attractive and valuable optimization problem formulation in that it can easily transform into a variety of other combinatorial optimization problems such as Graph/number Partition, Max-Cut, SAT, Vertex Coloring, TSP, etc. Some of these problems are NP-hard and widely applied in industry and scientific research. Meanwhile, QUBO has been discovered to be compatible with two emerging computing paradigms, neuromorphic computing, and quantum computing, with tremendous potential to speed up future optimization solvers. In this paper, we propose a novel neuromorphic computing paradigm that employs multiple collaborative spiking neural networks to solve QUBO problems. Each SNN conducts a local stochastic gradient descent search and shares the global best solutions periodically to perform a meta-heuristic search for optima. We simulate our model and compare it to a single SNN solver and a mult-SNN solver without collaboration. Through tests on benchmark problems, the proposed method is demonstrated to be more efficient and effective in searching for QUBO optima. Specifically, it exhibits x10 and x15-20 speedup respectively on the multi-SNN solver without collaboration and the single-SNN solver. 
    more » « less
  3. Many kinds of algorithms have been developed for solving the constraint satisfaction problem (WCSP), a combinatorial optimization problem that frequently appears in AI. Unfortunately, its NP-hardness prohibits the existence of an algorithm for solving it that is universally efficient on classical computers. Therefore, a peek into quantum computers may be imperative for solving the WCSP efficiently. In this paper, we focus on a specific type of quantum computer, called the quantum annealer, which approximately solves quadratic unconstrained binary optimization (QUBO) problems. We propose the first three hybrid quantum-classical algorithms (HQCAs) for the WCSP: one specifically for the binary Boolean WCSP and the other two for the general WCSP. We experimentally show that the HQCA based on simple polynomial reformulation works well on the binary Boolean WCSP, but the HQCA based on the constraint composite graph works best on the general WCSP. 
    more » « less
  4. We report the first-ever formulation of the molecular dynamics problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem and demonstrate its successful solution on a D-Wave quantum annealer. This methodology, named a Quantum Differential Equation (QDE) solver, is applied to propagate trajectories for the vibrational motion of hydrogen molecule, H2, in three different energy regimes: nearly harmonic, highly anharmonic, and above dissociation threshold. The results obtained using the D-Wave 2000Q quantum annealer are mutually consistent and quickly converge to the exact solution. Several alternative strategies for such calculations are explored and it is shown that the most accurate result and the best efficiency are obtained by combining quantum annealer with classical post-processing (known as “greedy” algorithm). Importantly, the QDE framework developed here is entirely general and can be applied to solve any system of first-order ordinary nonlinear differential equations using a quantum annealer. 
    more » « less
  5. Analog circuit design requires substantial human expertise and involvement, which is a significant roadblock to design productivity. Bayesian Optimization (BO), a popular machine-learning-based optimization strategy, has been leveraged to automate analog design given its applicability across various circuit topologies and technologies. Traditional BO methods employ black-box Gaussian Process surrogate models and optimized labeled data queries to find optimization solutions by trading off between exploration and exploitation. However, the search for the optimal design solution in BO can be expensive from both a computational and data usage point of view, particularly for high-dimensional optimization problems. This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization. ADO-LLM leverages the LLM’s ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high-value design areas specifically under the limited design space coverage of the BO's probabilistic surrogate model. In the meantime, sampling of design points evaluated in the iterative BO process provides quality demonstrations for the LLM to generate high-quality design points while leveraging infused broad design knowledge. Furthermore, the diversity brought by BO's exploration enriches the contextual understanding of the LLM and allows it to more broadly search in the design space and prevent repetitive and redundant suggestions. We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness. 
    more » « less