skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalization in portfolio-based algorithm selection
Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting.  more » « less
Award ID(s):
1901403
PAR ID:
10288814
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Solving the Multi-Agent Path Finding (MAPF) problem optimally is known to be NP-Hard for both make-span and total arrival time minimization. While many algorithms have been developed to solve MAPF problems, there is no dominating optimal MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm. In this work, we develop the deep convolutional network MAPFAST (Multi-Agent Path Finding Algorithm SelecTor), which takes a MAPF problem instance and attempts to select the fastest algorithm to use from a portfolio of algorithms. We improve the performance of our model by including single-agent shortest paths in the instance embedding given to our model and by utilizing supplemental loss functions in addition to a classification loss. We evaluate our model on a large and di- verse dataset of MAPF instances, showing that it outperforms all individual algorithms in its portfolio as well as the state-of-the-art optimal MAPF algorithm selector. We also provide an analysis of algorithm behavior in our dataset to gain a deeper understanding of optimal MAPF algorithms’ strengths and weaknesses to help other researchers leverage different heuristics in algorithm designs. 
    more » « less
  2. Tree search algorithms, such as branch-and-bound, are the most widely used tools for solving combinatorial and non-convex problems. For example, they are the foremost method for solving (mixed) integer programs and constraint satisfaction problems. Tree search algorithms come with a variety of tunable parameters that are notoriously challenging to tune by hand. A growing body of research has demonstrated the power of using a data-driven approach to automatically optimize the parameters of tree search algorithms. These techniques use atraining setof integer programs sampled from an application-specific instance distribution to find a parameter setting that has strong average performance over the training set. However, with too few samples, a parameter setting may have strong average performance on the training set but poor expected performance on future integer programs from the same application. Our main contribution is to provide the firstsample complexity guaranteesfor tree search parameter tuning. These guarantees bound the number of samples sufficient to ensure that the average performance of tree search over the samples nearly matches its future expected performance on the unknown instance distribution. In particular, the parameters we analyze weightscoring rulesused for variable selection. Proving these guarantees is challenging because tree size is a volatile function of these parameters: we prove that, for any discretization (uniform or not) of the parameter space, there exists a distribution over integer programs such that every parameter setting in the discretization results in a tree with exponential expected size, yet there exist parameter settings between the discretized points that result in trees of constant size. In addition, we provide data-dependent guarantees that depend on the volatility of these tree-size functions: our guarantees improve if the tree-size functions can be well approximated by simpler functions. Finally, via experiments, we illustrate that learning an optimal weighting of scoring rules reduces tree size. 
    more » « less
  3. Coreset is a small set that provides a data summary for a large dataset, such that training solely on the small set achieves competitive performance compared with a large dataset. In rehearsal-based continual learning, the coreset is typically used in the memory replay buffer to stand for representative samples in previous tasks, and the coreset selection procedure is typically formulated as a bilevel problem. However, the typical bilevel formulation for coreset selection explicitly performs optimization over discrete decision variables with greedy search, which is computationally expensive. Several works consider other formulations to address this issue, but they ignore the nested nature of bilevel optimization problems and may not solve the bilevel coreset selection problem accurately. To address these issues, we propose a new bilevel formulation, where the inner problem tries to find a model which minimizes the expected training error sampled from a given probability distribution, and the outer problem aims to learn the probability distribution with approximately $$K$$ (coreset size) nonzero entries such that learned model in the inner problem minimizes the training error over the whole data. To ensure the learned probability has approximately $$K$$ nonzero entries, we introduce a novel regularizer based on the smoothed top-$$K$$ loss in the upper problem. We design a new optimization algorithm that provably converges to the $$\epsilon$$-stationary point with $$O(1/\epsilon^4)$$ computational complexity. We conduct extensive experiments in various settings in continual learning, including balanced data, imbalanced data, and label noise, to show that our proposed formulation and new algorithm significantly outperform competitive baselines. From bilevel optimization point of view, our algorithm significantly improves the vanilla greedy coreset selection method in terms of running time on continual learning benchmark datasets. The code is available at \url{https://github.com/MingruiLiu-ML-Lab/Bilevel-Coreset-Selection-via-Regularization}. 
    more » « less
  4. The model selection problem in the pure exploration linear bandit setting is introduced and studied in both the fixed confidence and fixed budget settings. The model selection problem considers a nested sequence of hypothesis classes of increasing complexities. Our goal is to automatically adapt to the instance-dependent complexity measure of the smallest hypothesis class containing the true model, rather than suffering from the complexity measure related to the largest hypothesis class. We provide evidence showing that a standard doubling trick over dimension fails to achieve the optimal instance-dependent sample complexity. Our algorithms define a new optimization problem based on experimental design that leverages the geometry of the action set to efficiently identify a near-optimal hypothesis class. Our fixed budget algorithm uses a novel application of a selection-validation trick in bandits. This provides a new method for the understudied fixed budget setting in linear bandits (even without the added challenge of model selection). We further generalize the model selection problem to the misspecified regime, adapting our algorithms in both fixed confidence and fixed budget settings. 
    more » « less
  5. Avoiding overfitting is a central challenge in machine learning, yet many large neural networks readily achieve zero training loss. This puzzling contradiction necessitates new approaches to the study of overfitting. Here we quantify overfitting via residual information, defined as the bits in fitted models that encode noise in training data. Information efficient learning algorithms minimize residual information while maximizing the relevant bits, which are predictive of the unknown generative models. We solve this optimization to obtain the information content of optimal algorithms for a linear regression problem and compare it to that of randomized ridge regression. Our results demonstrate the fundamental trade-off between residual and relevant information and characterize the relative information efficiency of randomized regression with respect to optimal algorithms. Finally, using results from random matrix theory, we reveal the information complexity of learning a linear map in high dimensions and unveil information-theoretic analogs of double and multiple descent phenomena. 
    more » « less