skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
The model selection problem in the pure exploration linear bandit setting is introduced and studied in both the fixed confidence and fixed budget settings. The model selection problem considers a nested sequence of hypothesis classes of increasing complexities. Our goal is to automatically adapt to the instance-dependent complexity measure of the smallest hypothesis class containing the true model, rather than suffering from the complexity measure related to the largest hypothesis class. We provide evidence showing that a standard doubling trick over dimension fails to achieve the optimal instance-dependent sample complexity. Our algorithms define a new optimization problem based on experimental design that leverages the geometry of the action set to efficiently identify a near-optimal hypothesis class. Our fixed budget algorithm uses a novel application of a selection-validation trick in bandits. This provides a new method for the understudied fixed budget setting in linear bandits (even without the added challenge of model selection). We further generalize the model selection problem to the misspecified regime, adapting our algorithms in both fixed confidence and fixed budget settings.  more » « less
Award ID(s):
2023239
PAR ID:
10333338
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the (ǫ, δ)-PAC setting: given a policy class Π the goal of the learner is to return a policy π ∈ Π whose expected reward is within ǫ of the optimal policy with probability greater than 1 − δ. We characterize the first instance-dependent PAC sample complexity of contextual bandits through a quantity ρΠ, and provide matching upper and lower bounds in terms of ρΠ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to an argmax oracle. 
    more » « less
  2. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    While much progress has been made in understanding the minimax sample complexity of reinforcement learning (RL)—the complexity of learning on the “worst-case” instance—such measures of complexity often do not capture the true difficulty of learning. In practice, on an “easy” instance, we might hope to achieve a complexity far better than that achievable on the worst-case instance. In this work we seek to understand the “instance-dependent” complexity of learning near-optimal policies (PAC RL) in the setting of RL with linear function approximation. We propose an algorithm, Pedel, which achieves a fine-grained instance-dependent measure of complexity, the first of its kind in the RL with function approximation setting, thereby capturing the difficulty of learning on each particular problem instance. Through an explicit example, we show that Pedel yields provable gains over low-regret, minimax-optimal algorithms and that such algorithms are unable to hit the instance-optimal rate. Our approach relies on a novel online experiment design-based procedure which focuses the exploration budget on the “directions” most relevant to learning a near-optimal policy, and may be of independent interest. 
    more » « less
  3. We study model selection in linear bandits, where the learner must adapt to the dimension (denoted by 𝑑⋆ ) of the smallest hypothesis class containing the true linear model while balancing exploration and exploitation. Previous papers provide various guarantees for this model selection problem, but have limitations; i.e., the analysis requires favorable conditions that allow for inexpensive statistical testing to locate the right hypothesis class or are based on the idea of “corralling” multiple base algorithms, which often performs relatively poorly in practice. These works also mainly focus on upper bounds. In this paper, we establish the first lower bound for the model selection problem. Our lower bound implies that, even with a fixed action set, adaptation to the unknown dimension 𝑑⋆ comes at a cost: There is no algorithm that can achieve the regret bound 𝑂˜(𝑑⋆𝑇‾‾‾‾√) simultaneously for all values of 𝑑⋆ . We propose Pareto optimal algorithms that match the lower bound. Empirical evaluations show that our algorithm enjoys superior performance compared to existing ones. 
    more » « less
  4. The level set estimation problem seeks to find all points in a domain  where the value of an unknown function 𝑓:→ℝ exceeds a threshold 𝛼 . The estimation is based on noisy function evaluations that may be acquired at sequentially and adaptively chosen locations in  . The threshold value 𝛼 can either be explicit and provided a priori, or implicit and defined relative to the optimal function value, i.e. 𝛼=(1−𝜖)𝑓(𝐱∗) for a given 𝜖>0 where 𝑓(𝐱∗) is the maximal function value and is unknown. In this work we provide a new approach to the level set estimation problem by relating it to recent adaptive experimental design methods for linear bandits in the Reproducing Kernel Hilbert Space (RKHS) setting. We assume that 𝑓 can be approximated by a function in the RKHS up to an unknown misspecification and provide novel algorithms for both the implicit and explicit cases in this setting with strong theoretical guarantees. Moreover, in the linear (kernel) setting, we show that our bounds are nearly optimal, namely, our upper bounds match existing lower bounds for threshold linear bandits. To our knowledge this work provides the first instance-dependent, non-asymptotic upper bounds on sample complexity of level-set estimation that match information theoretic lower bounds. 
    more » « less
  5. Most linear experimental design problems assume homogeneous variance, while the presence of heteroskedastic noise is present in many realistic settings. Let a learner have access to a finite set of measurement vectors that can be probed to receive noisy linear responses. We propose, analyze and empirically evaluate a novel design for uniformly bounding estimation error of the variance parameters. We demonstrate this method on two adaptive experimental design problems under heteroskedastic noise, fixed confidence transductive best-arm identification and level-set identification and prove the first instance-dependent lower bounds in these settings. Lastly, we construct near-optimal algorithms and demonstrate the large improvements in sample complexity gained from accounting for heteroskedastic variance in these designs empirically. 
    more » « less