skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlocal-Interaction Equation on Graphs: Gradient Flow Structure and Continuum Limit
Abstract We consider dynamics driven by interaction energies on graphs. We introduce graph analogues of the continuum nonlocal-interaction equation and interpret them as gradient flows with respect to a graph Wasserstein distance. The particular Wasserstein distance we consider arises from the graph analogue of the Benamou–Brenier formulation where the graph continuity equation uses an upwind interpolation to define the density along the edges. While this approach has both theoretical and computational advantages, the resulting distance is only a quasi-metric. We investigate this quasi-metric both on graphs and on more general structures where the set of “vertices” is an arbitrary positive measure. We call the resulting gradient flow of the nonlocal-interaction energy the nonlocal nonlocal-interaction equation (NL $$^2$$ 2 IE). We develop the existence theory for the solutions of the NL $$^2$$ 2 IE as curves of maximal slope with respect to the upwind Wasserstein quasi-metric. Furthermore, we show that the solutions of the NL $$^2$$ 2 IE on graphs converge as the empirical measures of the set of vertices converge weakly, which establishes a valuable discrete-to-continuum convergence result.  more » « less
Award ID(s):
1814991
PAR ID:
10288839
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Archive for Rational Mechanics and Analysis
Volume:
240
Issue:
2
ISSN:
0003-9527
Page Range / eLocation ID:
699 to 760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lipschitz learning is a graph-based semisupervised learning method where one extends labels from a labeled to an unlabeled data set by solving the infinity Laplace equation on a weighted graph. In this work we prove uniform convergence rates for solutions of the graph infinity Laplace equation as the number of vertices grows to infinity. Their continuum limits are absolutely minimizing Lipschitz extensions (AMLEs) with respect to the geodesic metric of the domain where the graph vertices are sampled from. We work under very general assumptions on the graph weights, the set of labeled vertices and the continuum domain. Our main contribution is that we obtain quantitative convergence rates even for very sparsely connected graphs, as they typically appear in applications like semisupervised learning. In particular, our framework allows for graph bandwidths down to the connectivity radius. For proving this we first show a quantitative convergence statement for graph distance functions to geodesic distance functions in the continuum. Using the ‘comparison with distance functions’ principle, we can pass these convergence statements to infinity harmonic functions and AMLEs. 
    more » « less
  2. Abstract The seminal result of Benamou and Brenier provides a characterization of the Wasserstein distance as the path of the minimal action in the space of probability measures, where paths are solutions of the continuity equation and the action is the kinetic energy. Here we consider a fundamental modification of the framework where the paths are solutions of nonlocal (jump) continuity equations and the action is a nonlocal kinetic energy. The resulting nonlocal Wasserstein distances are relevant to fractional diffusions and Wasserstein distances on graphs. We characterize the basic properties of the distance and obtain sharp conditions on the (jump) kernel specifying the nonlocal transport that determine whether the topology metrized is the weak or the strong topology. A key result of the paper are the quantitative comparisons between the nonlocal and local Wasserstein distance. 
    more » « less
  3. We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of m reference measures given a set of coefficients belonging to the m-dimensional simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure μ. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of regularized barycenters as solutions to a fixed-point equation for the average of the entropic maps from the barycenter to the reference measures. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when μ is a barycenter. It is shown that these coordinates, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, a hallmark of entropy-regularized optimal transport, and we verify these rates experimentally. We also establish that barycentric coordinates are stable with respect to perturbations in the Wasserstein-2 metric, suggesting a robustness of these coefficients to corruptions. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes. 
    more » « less
  4. Wasserstein gradient flows on probability measures have found a host of applications in various optimization problems. They typically arise as the continuum limit of exchangeable particle systems evolving by some mean-field interaction involving a gradient-type potential. However, in many problems, such as in multi-layer neural networks, the so-called particles are edge weights on large graphs whose nodes are exchangeable. Such large graphs are known to converge to continuum limits called graphons as their size grows to infinity. We show that the Euclidean gradient flow of a suitable function of the edge weights converges to a novel continuum limit given by a curve on the space of graphons that can be appropriately described as a gradient flow or, more technically, a curve of maximal slope. Several natural functions on graphons, such as homomorphism functions and the scalar entropy, are covered by our setup, and the examples have been worked out in detail. 
    more » « less
  5. The application of graph Laplacian eigenvectors has been quite popular in the graph signal processing field: one can use them as ingredients to design smooth multiscale basis. Our long-term goal is to study and understand the dual geometry of graph Laplacian eigenvectors. In order to do that, it is necessary to define a certain metric to measure the behavioral differences between each pair of the eigenvectors. Saito (2018) considered the ramified optimal transportation (ROT) cost between the square of the eigenvectors as such a metric. Clonginger and Steinerberger (2018) proposed a way to measure the affinity (or `similarity') between the eigenvectors based on their Hadamard (HAD) product. In this article, we propose a simplified ROT metric that is more computational efficient and introduce two more ways to define the distance between the eigenvectors, i.e., the time-stepping diffusion (TSD) metric and the difference of absolute gradient (DAG) pseudometric. The TSD metric measures the cost of "flattening" the initial graph signal via diffusion process up to certain time, hence it can be viewed as a time-dependent version of the ROT metric. The DAG pseudometric is the l2-distance between the feature vectors derived from the eigenvectors, in particular, the absolute gradients of the eigenvectors. We then compare the performance of ROT, HAD and the two new "metrics: on different kinds of graphs. Finally, we investigate their relationship as well as their pros and cons. Keywords: Graph Laplacian eigenvectors, metrics between orthonormal vectors, dual geometry of graph Laplacian eigenvectors, multiscale basis dictionaries on graphs, heat diffusion on graphs, Wasserstein distance, optimal transport 
    more » « less