skip to main content

Title: Geospatial Management and Analysis of Microstructural Data from San Andreas Fault Observatory at Depth (SAFOD) Core Samples
Core samples obtained from scientific drilling could provide large volumes of direct microstructural and compositional data, but generating results via the traditional treatment of such data is often time-consuming and inefficient. Unifying microstructural data within a spatially referenced Geographic Information System (GIS) environment provides an opportunity to readily locate, visualize, correlate, and apply remote sensing techniques to the data. Using 26 core billet samples from the San Andreas Fault Observatory at Depth (SAFOD), this study developed GIS-based procedures for: 1. Spatially referenced visualization and storage of various microstructural data from core billets; 2. 3D modeling of billets and thin section positions within each billet, which serve as a digital record after irreversible fragmentation of the physical billets; and 3. Vector feature creation and unsupervised classification of a multi-generation calcite vein network from cathodluminescence (CL) imagery. Building on existing work which is predominantly limited to the 2D space of single thin sections, our results indicate that a GIS can facilitate spatial treatment of data even at centimeter to nanometer scales, but also revealed challenges involving intensive 3D representations and complex matrix transformations required to create geographically translated forms of the within-billet coordinate systems, which are suggested for consideration in future studies.
Authors:
; ; ; ;
Award ID(s):
1800933
Publication Date:
NSF-PAR ID:
10288937
Journal Name:
ISPRS International Journal of Geo-Information
Volume:
10
Issue:
5
Page Range or eLocation-ID:
332
ISSN:
2220-9964
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an orientation system for thin sections used for microanalysis, applicable to both billets and cores. The orientation system enables spatially referenced observations and consists of three parts. First, we establish a reference corner that is the uppermost corner of the sample on the thin section, in its original geographic orientation in the field or laboratory setting. This corner is tied to a right-hand coordinate system, in which all reference axes point downward. A geographic direction-based, rather than uppermost corner-based, convention for a reference corner can be substituted for projects that utilize sub-horizontally oriented thin sections. The reference corner - combined with orientation metadata - define a unique position of the thin section in geographic space. Second, we propose a system of small saw cuts (notches) that minimizes the number of notches required on the sample, to distinguish both the reference corner and the orientation of the thin section relative to fabric (e.g., foliation/lineation), if present. The utility of a notching standard is that it provides an inherent doublecheck on thin section orientation and facilitates sharing between users. Third, we develop a grid system in order to locate features of interest on the thin section, relative to the referencemore »corner. Any of these systems – referencing, notching, and gridding – can be used independently. These systems are specifically designed to work with digital data systems, which are currently being developed, allowing researchers to share microstructural data with each other and facilitating new types of big data science in the field of structural geology.« less
  2. While cells within tissues generate and sense 3D states of strain, the current understanding of the mechanics of fibrous extracellular matrices (ECMs) stems mainly from uniaxial, biaxial, and shear tests. Here, we demonstrate that the multiaxial deformations of fiber networks in 3D cannot be inferred solely based on these tests. The interdependence of the three principal strains gives rise to anomalous ratios of biaxial to uniaxial stiffness between 8 and 9 and apparent Poisson’s ratios larger than 1. These observations are explained using a microstructural network model and a coarse-grained constitutive framework that predicts the network Poisson effect and stress–strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the microstructural properties of the network, including fiber mechanics and pore size of the network. Using this theoretical approach, we found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic stiffness of thin collagen samples in extension tests, reconciling the seemingly disparate measurements of the stiffness of collagen networks using different methods. We applied our framework to study the formation of fiber tracts induced by cellular forces. In vitro experiments with low-density networks showed that the anomalous Poisson effect facilitates highermore »densification of fibrous tracts, associated with the invasion of cancerous acinar cells. The approach developed here can be used to model the evolving mechanics of ECM during cancer invasion and fibrosis.

    « less
  3. Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed throughmore »magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite.« less
  4. Abstract Understanding primary productivity is a core research area of the National Science Foundation's Long-Term Ecological Research Network. This study presents the development of the GIS-based Topographic Solar Photosynthetically Active Radiation (T-sPAR) toolbox for Taylor Valley. It maps surface photosynthetically active radiation using four meteorological stations with ~20 years of data. T-sPAR estimates were validated with ground-truth data collected at Taylor Valley's major lakes during the 2014–15 and 2015–16 field seasons. The average daily error ranges from 0.13 mol photons m -2 day -1 (0.6%) at Lake Fryxell to 3.8 mol photons m -2 day -1 (5.8%) at Lake Hoare. We attribute error to variability in terrain and sun position. Finally, a user interface was developed in order to estimate total daily surface photosynthetically active radiation for any location and date within the basin. T-sPAR improves upon existing toolboxes and models by allowing for the inclusion of a statistical treatment of light attenuation due to cloud cover. The T-sPAR toolbox could be used to inform biological sampling sites based on radiation distribution, which could collectively improve estimates of net primary productivity, in some cases by up to 25%.
  5. IODP Expedition 379 deep-sea drilling in 2019 (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021), offered an opportunity to obtain chronostratigraphic control for seismic reflection data for Amundsen Sea shelf and slope deposits that record Miocene to Present fluctuations in volume of the West Antarctic ice sheet. Here we report the age and interpret the provenance of a volcanic ash bed recovered at/near the Plio-Pleistocene boundary at 31.51 meters below sea level in Hole U1533B and 33.94 mbsf in Hole U1533D. With distinctive geochemistry and inferred wide regional distribution, the bed may serve as a reliable age marker. In Hole 1533B, the fresh tephra forms a discrete layer interstratified within uniform brown marine mud. The layer has a sharp base and upper boundary that is gradational over 5 cm into overlying mud. Color reflectance and density data aided identification of the tephra horizon (diffuse) in Hole 1533D, ~1000m away. A possible on-land source for ash is the Miocene to Pleistocene Marie Byrd Land volcanic province, comprising 18 large alkaline volcanoes dominated by effusive lavas. Products of pyroclastic eruptions are uncommon, mainly occurring as distal englacial, and probably marine, tephra. We undertook an offshore-onshore comparison by first characterizing samples of Site U1533 tephra frommore »a petrographic and geochemical standpoint, using thin section observations, EMPA-WDS glass compositions, and 40Ar/39Ar dating. We then identified onshore exposures with similar characteristics. The offshore tephra are composed of coarse (50-300µm) cuspate glass shards with elongated vesicles. The glass composition is rhyolite, with 75-79wt.% SiO2, ~4wt.% FeO and 0.0wt.% MgO. Single-crystal feldspar 40Ar/39Ar dates are 2.55±0.12 and 2.92±0.02 Ma for U1533B and 2.87 ±0.45 Ma for U1533D. The geochemistry, shard morphology, discrete bed expression, and lateral continuity between Holes U1533B-U1533D indicate that the rhyolite tephra formed as airfall settled to the deep seabed. The ca. 2.55 Ma age based on youngest feldspar grains differs slightly from the 2.1 to 2.2 Ma result obtained from in-progress core bio-magnetostratigraphy. Rare exposures of rhyolite are found in the Chang Peak/Mt. Waesche centers, 1080 km from Site U1533. We obtained pumice sample MB.7.3 (prior-published age of 1.6±0.2 Ma), which displays elevated FeO and F content, and MB.8.1, a specimen of porphyritic cryptocrystalline lava. Single-crystal sanidine 40Ar/39Ar dates are 1.315±0.007 Ma (MB.7.3) and 1.385±0.003 Ma (MB.8.1). Site U1533 samples share a geochemical affinity with these on-land rhyolites, expressed as similar SiO2, CaO, TiO2, MgO and FeO content, suggesting an origin for Site U1533 tephra in the Chang-Waesche volcanoes. A possible explanation for the distinctly greater age, and observed contrasts in Al2O3, Na2O and F percentages, is that Site U1533 tephra are older and erupted from a source entirely concealed beneath subsequent eruptions and the ice sheet. Our results suggest that rhyolite volcanism initiated earlier, was of longer duration than previously known (2.92 to 1.315 Ma), and dispersed tephra far offshore. The finding is significant because ash and aerosols produced by large eruptions may influence regional climate. Antarctica cooled significantly and ice sheets expanded in latest Pliocene time (McKay et al. 2012, doi:10.1073/pnas.1112248109).« less