Extruded aluminum supply chains are materially inefficient with around 40% of the billet likely to be scrapped before the profile is embedded in a product. One of the largest sources of scrap is the removal due to weld integrity concerns of the tongue-shaped transverse weld(s) that forms between consecutively extruded billets. Process setting and die geometry optimization can decrease the weld length (and hence scrapped material) by modest amounts. We explore a process for significant scrap savings using profiled dummy blocks to generate shorter welds by compensating for the differential metal flow velocities across the billet cross-section as it flows through the die ports. We develop a design process for defining the profiled dummy block shape. For a given part and press, we first define an ideal dummy block shape by extracting the velocity field from finite element simulations of the conventional process and assuming perfectly rigid tooling. Next, we rationalize the tool shape using stress and deflection limits (preventing plastic deformation and interference with the container wall) and ductile damage limits for the billet to prevent cracking. We then simulate the likely effect of the rationalized dummy block design on back-end defect removal. The methodology is demonstrated for four profiles of increasing complexity. The process’ potential is evaluated experimentally using billets machined to match the ideal dummy block shape. The results show that profiled billets can achieve weld length reductions >50% for simple shapes. We demonstrate that multi-profile tooling can deliver scrap savings across a family of similar profiles.
more »
« less
Investigating a novel approach to reduce transverse weld scrap in aluminum extrusion using profiled dummy blocks and billets
Abstract The supply chains of extruded aluminum are materially inefficient, with up to two-fifths of the billet being scrapped before the profile is incorporated into a final product. A significant source of process scrap arises from removing the tongue-shaped transverse weld—also known as the front-end defect or charge weld—that is formed between the consecutive billets being extruded, primarily because of concerns over weld integrity. Optimizing process settings and die geometry can reduce the transverse weld length—and thus the amount of scrapped material—but only by approximately 15%. We investigate a novel methodology for significant scrap reduction, where an initially profiled interface—rather than a flat one—between consecutively extruded billets compensates for the differential velocities of material across the billet cross-section as it moves through the die ports, resulting in shorter welds. This profiled interface is created using profiled billets that fit into a dummy block shaped with the inverse of the billet profile. We present a design process to define the shape of the profiled dummy block and billet. For a given part, we first determine the ideal shape by obtaining the velocity field from finite element simulations of the conventional extrusion process, assuming perfectly rigid tooling and no constraints on the creation of profiled tooling or billets. Next, we rationalize this shape by applying stress and deflection limits to the dummy block, ensuring it avoids plastic deformation and interference with the container wall. Additionally, we consider ductile damage limits for the billet to prevent cracking during a pre-extrusion hot forging stage, which is one method of generating profiled billets. The design process is applied to four profiles of increasing complexity: solid round and rectangular bars, a square-tube hollow, and a complex multi-hollow profile. Extrusion and forging trials using custom-built tooling are conducted to validate the design process. The experimental case studies demonstrate that profiled dummy blocks and billets can achieve weld length reductions of over 50% and that the same tooling can offer scrap savings across a range of similar extruded shapes. In the tests, a profiled dummy block with an air escape vent showed zero-to-negligible plastic deformation and neither air entrapment nor clogging of the vent during extrusion, while a conventional billet was hot-forged to produce profiled ends without cracking or deforming the forging tools. Overall, this study highlights that profiled billet extrusion is a promising technology for significantly reducing scrap from transverse weld removal in aluminum extrusions.
more »
« less
- Award ID(s):
- 2122515
- PAR ID:
- 10626367
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- International Journal of Material Forming
- Volume:
- 18
- Issue:
- 3
- ISSN:
- 1960-6206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reducing production scrap is vital for decarbonizing the aluminum industry. In extrusion, the greatest source of scrap stems from removing profile sections containing transverse (charge) welds that are deemed too weak for their intended purpose. However, until now, there has been no predictive transverse weld strength model. This article establishes a transverse weld strength model as a function of billet properties and extrusion parameters. It extends the film theory of solid-state welding by enhancing Cooper and Allwood’s plane strain model to consider non-plane strain deformations at the billet-billet interface. These enhancements are informed by analyzing oxide fragmentation patterns through shear lag modeling and microscopy of profiles extruded from anodized billets. Model predictions are assessed through shear tests on welds from single and two-piece billets, extruded into rod, bar, and multi-hollow profiles. The experiments reveal that negative surface expansions at the weld nose cause interface buckling and weaker welds, but both surface expansions and weld strengths increase with distance from the nose. In non-axisymmetric profiles, deformation conditions and strengths vary across, as well as along, the weld. Two-piece billet welds are longer but reach bulk strength long before weld termination. The model predicts these trends and shows that die pressures are sufficient for micro-extrusion of any exposed substrate through interface oxide cracks. This underscores the significance of interface strains in exposing substrate and determining the weld strength. The model can help increase process yields by determining minimum lengths of weak profile to scrap and aiding process optimization for increased weld strength.more » « less
-
Lightweight automotive extrusions are increasingly complex, thin-walled, multi-hollow profiles made from quench-sensitive alloys like AA6082. These profiles require rapid (water) quenching as they leave the press in preparation for age-hardening. Conventional rapid quenching, which only directly cools the profile’s extremity, can distort the part. Lower quenching rates reduce distortion but may compromise the mechanical properties. We test three hypotheses: (1) That the different cooling rates across the section during quenching induce varying mechanical properties as well as distortion; (2) That this temperature differential can be minimized by combining novel internal profile quenching with conventional quenching; and (3) That internal quenching can be achieved using insulated channels in the extrusion die to convey the quenchant to the profile’s interior. The first hypothesis is tested experimentally by taking tensile specimens from a AA6082 multi-hollow profile. The second is examined experimentally using a lab-built quench box and theoretically using thermo-mechanical finite element simulations. The third hypothesis is tested by conducting a hollow profile extrusion trial using a specially designed porthole die. The testing shows that conventional quenching results in reduced mechanical properties in the profile’s internal walls but that combined external/internal quenching alleviates this problem and reduces distortion. The extrusion trial on internal quenching demonstrates die survivability, an acceptable die temperature drop during quenchant flow, and effective quenchant disposal via evaporation and capture of liquid at the end of the profile. This study suggests that internal quenching is a promising technology option for reducing scrap and improving mechanical properties of hard-to-quench aluminum profiles.more » « less
-
Lightweight automotive extrusions are increasingly complex, thin-walled, multi-hollow profiles made from high-strength, quench-sensitive aluminum alloys such as AA6082. These alloys require rapid quenching as the profile leaves the press to prevent the precipitation of undesired phases, to create a supersaturated solid solution, and to prepare them for subsequent age-hardening treatments; e.g., for the T6 temper. However, rapid quenching can cause profile distortion, which leads to high scrap reject rates, increasing costs, environmental impacts, and production lead time. This study tests two hypotheses: (1) That the different cooling rates set-up across the profile section during quenching induces not only distortion but also varying mechanical properties across the section; and (2) That this temperature differential can be minimized by combining (conventional) external quenching with internal quenching supplied by through-die cooling channels. The first hypothesis is tested experimentally by taking tensile specimens from different locations of an AA6082 multi-hollow profile, showing a significant decrease in the ductility and ultimate tensile strength of samples extracted from internal webs. The second hypothesis is tested by performing thermo-mechanical finite element simulations that compare the thermal history, stresses, and strains of simultaneous internal and external quenching in contrast with conventional quenching (external only). The combined quenching approach results in a significant reduction in the residual stress and plastic deformation. This implies lower scrap reject rates, improved internal wall mechanical properties (giving scope for further light-weighting), and a wider profile design space by enabling the extrusion of more challenging profile shapes.more » « less
-
null (Ed.)Ultra-high molecular weight polyethylene (UHMWPE) used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty, has to possess superior tribological properties, high mechanical strength, and toughness. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to introduce large shear strains to achieve higher molecular entanglement and superior mechanical properties of this material. Finite element analysis (FEA) can be utilized to evaluate the influence of important manufacturing parameters such as the extrusion rate, temperature, geometry of the die, back pressure, and friction effects. In this paper we present efficient FEA models of ECAE for UHMWPE. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. Three considered material models (J2-plasticity, Bergstrom-Boyce, and the Three Network Model) predict different extrusion loads, deformed shapes and accumulated shear strain distributions. The work has also shown that the friction coefficient significantly influences the punch force and that the 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel. Additionally, a sharp corner in the die can lead to the formation of the so-called “dead zone” due to a portion of the material lodging into the corner and separating from the billet. Our study shows that the presence of this material in the corner substantially affects the extrusion force and the resulting distribution of accumulated shear strain within the billetmore » « less
An official website of the United States government
