skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Power and carbon monoxide co-production by a proton-conducting solid oxide fuel cell with La 0.6 Sr 0.2 Cr 0.85 Ni 0.15 O 3−δ for on-cell dry reforming of CH 4 by CO 2
To directly use a CO 2 –CH 4 gas mixture for power and CO co-production by proton-conducting solid oxide fuel cells (H-SOFCs), a layer of in situ reduced La 0.6 Sr 0.2 Cr 0.85 Ni 0.15 O 3−δ (LSCrN@Ni) is fabricated on a Ni–BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) anode-supported H-SOFC (H-DASC) for on-cell CO 2 dry reforming of CH 4 (DRC). For demonstrating the effectiveness of LSCrN@Ni, a cell without adding the LSCrN@Ni catalyst (H-CASC) is also studied comparatively. Fueled with H 2 , both H-CASC and H-DASC show similar stable performance with a maximum power density ranging from 0.360 to 0.816 W cm −2 at temperatures between 550 and 700 °C. When CO 2 –CH 4 is used as the fuel, the performance and stability of H-CASC decreases considerably with a maximum power density of 0.287 W cm −2 at 700 °C and a sharp drop in cell voltage from the initial 0.49 to 0.10 V within 20 h at 0.6 A cm −2 . In contrast, H-DASC demonstrates a maximum power density of 0.605 W cm −2 and a stable cell voltage above 0.65 V for 65 h. This is attributed to highly efficient on-cell DRC by LSCrN@Ni.  more » « less
Award ID(s):
1832809
PAR ID:
10288974
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
8
Issue:
19
ISSN:
2050-7488
Page Range / eLocation ID:
9806 to 9812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than the same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling. 
    more » « less
  2. Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes. 
    more » « less
  3. This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show that GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C. 
    more » « less
  4. In the context of CO 2 valorization, the possibility of shifting the selectivity of Ni catalysts from CO 2 methanation to reverse water gas shift reaction could be economically attractive provided that the catalyst presents sufficient activity and stability. Remarkably, the addition of sulfur (0.2–0.8% w/w) to nickel on a Ni/TiO 2 catalyst induces a complete shift in the catalyst selectivity for CO 2 hydrogenation at 340 °C from 99.7% CH 4 to 99.7% CO. At an optimal Ni/S atomic ratio of 4.5, the productivity of the catalyst reaches 40.5 mol CO 2 mol Ni −1 h −1 with a good stability. Density functional theory (DFT) calculations performed on various Ni surfaces reveal that the key descriptor of selectivity is the binding energy of the CO intermediate, which is related to the local electron density of surface Ni sites. 
    more » « less
  5. Abstract In this work, a low power microcontroller-based near field communication (NFC) interfaced with a flexible abiotic glucose hybrid fuel cell is designed to function as a battery-less glucose sensor. The abiotic glucose fuel cell is fabricated by depositing colloidal platinum (co–Pt) on the anodic region and silver oxide nanoparticles-multiwalled carbon nanotubes (Ag 2 O-MWCNTs) composite on the cathodic region. The electrochemical behavior is characterized using cyclic voltammetry and chronoamperometry. This glucose hybrid fuel cell generated an open circuit voltage of 0.46 V, short circuit current density of 0.444 mA/cm 2 , and maximum power density of 0.062 mW/cm 2 at 0.26 V in the presence of 7 mM physiologic glucose. Upon device integration of the abiotic glucose hybrid fuel cell with the NFC module, the data from the glucose monitoring system is successfully transmitted to an android application for visualization at the user interface. The cell voltage correlated (r 2  = 0.989) with glucose concentration (up to 19 mM) with a sensitivity of 13.9 mV/mM•cm 2 . 
    more » « less