skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anthropogenic climate change is worsening North American pollen seasons
Airborne pollen has major respiratory health impacts and anthropogenic climate change may increase pollen concentrations and extend pollen seasons. While greenhouse and field studies indicate that pollen concentrations are correlated with temperature, a formal detection and attribution of the role of anthropogenic climate change in continental pollen seasons is urgently needed. Here, we use long-term pollen data from 60 North American stations from 1990 to 2018, spanning 821 site-years of data, and Earth system model simulations to quantify the role of human-caused climate change in continental patterns in pollen concentrations. We find widespread advances and lengthening of pollen seasons (+20 d) and increases in pollen concentrations (+21%) across North America, which are strongly coupled to observed warming. Human forcing of the climate system contributed ∼50% (interquartile range: 19–84%) of the trend in pollen seasons and ∼8% (4–14%) of the trend in pollen concentrations. Our results reveal that anthropogenic climate change has already exacerbated pollen seasons in the past three decades with attendant deleterious effects on respiratory health.  more » « less
Award ID(s):
1711243
PAR ID:
10289096
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
7
ISSN:
0027-8424
Page Range / eLocation ID:
e2013284118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency’s Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment’s Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972–2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, a leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, longlived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading. 
    more » « less
  2. Abstract Phenological shifts due to climate change have been extensively studied in plants and animals. Yet, the responses of fungal spores—organisms important to ecosystems and major airborne allergens—remain understudied. This knowledge gap limits our understanding of their ecological and public health implications. To address this, we analyzed a long‐term (2003–2022), large‐scale (the continental US) data set of airborne fungal spores collected by the US National Allergy Bureau. We first pre‐processed the spore data by gap‐filling and smoothing. Afterward, we extracted 10 metrics describing the phenology (e.g., start and end of season) and intensity (e.g., peak concentration and integral) of fungal spore seasons. These metrics were derived using two complementary but not mutually exclusive approaches—ecological and public health approaches, defined as percentiles of total spore concentration and allergenic thresholds of spore concentration, respectively. Using linear mixed‐effects models, we quantified annual shifts in these metrics across the continental US. We revealed a significant advancement in the onset of the spore seasons defined in both ecological (11 days, 95% confidence interval: 0.4–23 days) and public health (22 days, 6–38 days) approaches over two decades. Meanwhile, total spore concentrations in an annual cycle and in a spore allergy season tended to decrease over time. The earlier start of the spore season was significantly correlated with climatic variables, such as warmer temperatures and altered precipitations. Overall, our findings suggest possible climate‐driven advanced fungal spore seasons, highlighting the importance of climate change mitigation and adaptation in public health decision‐making. 
    more » « less
  3. Kenawy, Ahmed (Ed.)
    Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency. 
    more » « less
  4. Bat‐borne pathogens are a threat to global health and in recent history have had major impacts on human morbidity and mortality. Examples include diseases such as rabies, Nipah virus encephalitis, and severe acute respiratory syndrome (SARS). Climate change may exacerbate the emergence of bat‐borne pathogens by affecting the ecology of bats in tropical ecosystems. Here, we report the impacts of climate change on the distributional ecology of the common vampire batDesmodus rotundusacross the last century. Our retrospective analysis revealed a positive relationship between changes in climate and the northern expansion of the distribution ofD. rotundusin North America. Furthermore, we also found a reduction in the standard deviation of temperatures atD. rotunduscapture locations during the last century, expressed as more consistent, less‐seasonal climate in recent years. These results elucidate an association betweenD. rotundusrange expansion and a continental‐level rise in rabies virus spillover transmission fromD. rotundusto cattle in the last 50 years of the 120‐year study period. This correlative study, based on field observations, offers empirical evidence supporting previous statistical and mathematical simulation‐based studies reporting a likely increase of bat‐borne diseases in response to climate change. We conclude that theD. rotundusrabies system exemplifies the consequences of climate change augmentation at the wildlife–livestock–human interface, demonstrating how global change acts upon these complex and interconnected systems to drive increased disease emergence. 
    more » « less
  5. While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward. 
    more » « less