skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fungal Spore Seasons Advanced Across the US Over Two Decades of Climate Change
Abstract Phenological shifts due to climate change have been extensively studied in plants and animals. Yet, the responses of fungal spores—organisms important to ecosystems and major airborne allergens—remain understudied. This knowledge gap limits our understanding of their ecological and public health implications. To address this, we analyzed a long‐term (2003–2022), large‐scale (the continental US) data set of airborne fungal spores collected by the US National Allergy Bureau. We first pre‐processed the spore data by gap‐filling and smoothing. Afterward, we extracted 10 metrics describing the phenology (e.g., start and end of season) and intensity (e.g., peak concentration and integral) of fungal spore seasons. These metrics were derived using two complementary but not mutually exclusive approaches—ecological and public health approaches, defined as percentiles of total spore concentration and allergenic thresholds of spore concentration, respectively. Using linear mixed‐effects models, we quantified annual shifts in these metrics across the continental US. We revealed a significant advancement in the onset of the spore seasons defined in both ecological (11 days, 95% confidence interval: 0.4–23 days) and public health (22 days, 6–38 days) approaches over two decades. Meanwhile, total spore concentrations in an annual cycle and in a spore allergy season tended to decrease over time. The earlier start of the spore season was significantly correlated with climatic variables, such as warmer temperatures and altered precipitations. Overall, our findings suggest possible climate‐driven advanced fungal spore seasons, highlighting the importance of climate change mitigation and adaptation in public health decision‐making.  more » « less
Award ID(s):
2306198
PAR ID:
10621162
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
GeoHealth
Volume:
9
Issue:
7
ISSN:
2471-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The abundance of coprophilous (dung-inhabiting) fungal spores (CFS) in sedimentary records is an increasingly popular proxy for past megaherbivore abundance that is used to study megaherbivore-vegetation interactions, timing of megaherbivore population declines and extinctions, and the introduction of domesticated herbivores. This method often relies on counting CFS alongside pollen and tracers of known concentration such as exotic pollen or synthetic microspherules. Prior work has encouraged reporting CFS abundances as accumulation rates (spores/unit 2 /year) or concentration (spores/unit 3 ) instead of percentages relative to the total pollen abundance, because CFS percentages can be sensitive to fluctuations in pollen influx. In this work, we quantify the uncertainty associated with estimating concentration values at different total counts and find that high uncertainty is associated with concentration estimates using low to moderate total counts ( n = 20 to 200) of individual fungal spore types and tracers. We also demonstrate the effect of varying tracer proportions, and find that larger tracer proportions result in narrower confidence intervals. Finally, the probability of encountering a CFS spore from a specific taxon occurring in moderate concentrations (1,000 spores/unit 2 ) dramatically decreases after a low tracer count (∼50). The uncertainties in concentration estimates caused by calculating tracer proportion are a likely cause of the high observed variance in many CFS time series, especially when CFS or tracer concentrations are low. Thus, we recommend future CFS studies increase counts and report the uncertainty surrounding concentration values. For some records, reporting spore data as presence/absence rather than concentrations or counts is preferable, such as when performing high counts is not feasible. 
    more » « less
  2. Abstract Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition. 
    more » « less
  3. Global change is altering the phenology and geographic ranges of flowering species, with potentially profound consequences for the timing and composition of floral resources and the seasonal structure of ecological communities. However, shifts in flowering phenology and species distributions have historically been studied in isolation due to disciplinary silos and limited data, leaving critical gaps in our understanding of their combined effects. To address this, we used millions of herbarium and occurrence records to model phenological and range shifts for 2,837 plant species in the United States across historical, recent, and projected climate and land cover conditions, enabling us to scale responses from species to communities, and from local to continental geographies. Our analysis reveals that communities are shifting toward earlier, longer flowering seasons in most biomes, with co-flowering species richness increasing at the edges of the season and declining at historical peaks—trends projected to intensify under ongoing environmental trends. Although these shifts operate concurrently, they affect different aspects of the flowering season: phenological changes primarily alter seasonality—its start, end, and duration—and co-flowering diversity at the edges of the season, while range shifts more strongly influence co-flowering species richness during historical seasonal peaks, and attributes tied to community composition, such as patterns of flowering synchrony among co-occurring species. Together, these results demonstrate that shifts in phenology and species ranges act synergistically to restructure the flowering seasons across North America, revealing wide variation in the pace and magnitude of change among biomes. 
    more » « less
  4. Abstract Atmospheric conditions affect the release of anemophilous pollen, and the timing and magnitude will be altered by climate change. As simulated with a pollen emission model and future climate data, warmer end-of-century temperatures (4–6 K) shift the start of spring emissions 10–40 days earlier and summer/fall weeds and grasses 5–15 days later and lengthen the season duration. Phenological shifts depend on the temperature response of individual taxa, with convergence in some regions and divergence in others. Temperature and precipitation alter daily pollen emission maxima by −35 to 40% and increase the annual total pollen emission by 16–40% due to changes in phenology and temperature-driven pollen production. Increasing atmospheric CO2may increase pollen production, and doubling production in conjunction with climate increases end-of-century emissions up to 200%. Land cover change modifies the distribution of pollen emitters, yet the effects are relatively small (<10%) compared to climate or CO2. These simulations indicate that increasing pollen and longer seasons will increase the likelihood of seasonal allergies. 
    more » « less
  5. Climate change is altering global ocean phenology, the timing of annually occurring biological events. We examined the changing phenology of the phytoplankton accumulation season west of the Antarctic Peninsula to show that blooms are shifting later in the season over time in ice-associated waters. The timing of the start date and peak date of the phytoplankton accumulation season occurred later over time from 1997 to 2022 in the marginal ice zone and over the continental shelf. A divergence was seen between offshore waters and ice-associated waters, with offshore bloom timing becoming earlier, yet marginal ice zone and continental shelf bloom timing shifting later. Higher chlorophylla(chla) concentration in the fall season was seen in recent years, especially over the northern continental shelf. Minimal long-term trends in annual chlaoccurred, likely due to the combination of later start dates in spring and higher chlain fall. Increasing spring wind speed is the most likely mechanism for later spring start dates, leading to deeper wind mixing in a region experiencing sea ice loss. Later phytoplankton bloom timing over the marginal ice zone and continental shelf will have consequences for surface ocean carbon uptake, food web dynamics, and trophic cascades. 
    more » « less