An ongoing National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive, and supportive academy. This contribution will describe several interventions within this NRT, namely, a graduate certificate on Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) – which is the research topic of the NRT – field trips to sites related to INFEWS, internships and international experiences. Moreover, the assessment and outcomes of each of these interventions will be discussed. A graduate certificate on INFEWS established through this NRT aims to 1) impart both conceptual and technical knowledge related to INFEWS to students; 2) provide them with training on key transferable skills; and 3) equip them to consider the societal, cultural, behavioral, and economic aspects of research on the food, energy, and water nexus. The starting point of the certificate is a multi-departmental and interdisciplinary course on INFEWS. In a subsequent semester students receive training on key transferrable skills in a course designed to integrate these skills with content covered in the foregoing INFEWS course. Completing these core courses gives students 6 of the 12 credit hours needed to attain the certificate. Students earn the other 6 credits by choosing from a list of elective courses. Notably, courses fulfill both certificate and degree requirements, so anticipated time-to-degree is not extended. The certificate is evaluated by assessing student learning outcomes with multiple measures, which include teacher course evaluations of individual courses, the rubric used to review a research proposal that students prepare in the transferable skills course, a professional skills dossier, competency assessments, and student post-surveys. While field trips to facilities related to INFEWS and internships at sites best aligned with their career interests – inside or outside academia – helped foster a sense of community among trainees and exposed them to various work sites and career paths, international experiences helped them gain a global perspective and appreciation for the international nature of STEM research. Evaluation data related to field trips, internships, and international experiences are collected via student focus group discussions, student post-surveys, student follow-up surveys, and alumni surveys. Additionally, the number and type of internships are tracked, and student placement with the internship host after graduation is also monitored. By sharing a description of these interventions and details about their evaluation as well as their outcomes, this contribution will inform practitioners interested in similar educational programs and experiences of both challenges and opportunities associated with these initiatives. In turn, this will help the higher education community in its pursuit to identify and implement the best and most effective practices.
more »
« less
Description, Assessment, and Outcomes of Three Initial Interventions Within a National Science Foundation Research Traineeship (NRT): Onboarding Event, Career Exploration Symposium, and Multidisciplinary Introductory Course
A recently launched National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive and supportive academy. This contribution will describe three initial interventions within this NRT, namely, an onboarding and orientation event, a career exploration symposium, and a multidisciplinary introductory course. In addition, the assessment of each of these interventions – and the outcomes thereof – will be presented and discussed. Prior to the onboarding and orientation event, trainees received the event’s agenda and checklists summarizing pre- and post-event assignments. Pre-event assignments were designed to familiarize trainees with the NRT, the process of drafting an individual development plan (IDP), and the consent form required for traineeship evaluation purposes. During the event – held online due to COVID-19 – and following introductions, trainees were given the opportunity to ask questions stemming from the pre-event assignments. Subsequently, trainees were introduced to several tools (e.g., checklists as well as sample developmental network maps and mentoring contracts) to guide and track their development and progression through the traineeship. The event concluded with a discussion on topics that also constituted post-event assignments, including registering and preparing for both the career exploration symposium and the multidisciplinary introductory course. Survey data collected after the event indicated that trainees valued the opportunity to learn more about the NRT, ask questions, and meet faculty who expressed a commitment to student success. Shortly thereafter, trainees attended a career exploration symposium and moderated sessions featuring speakers representing careers of interest. Indeed, the symposium was purposely designed to expose trainees to a wide range of career pathways. In addition, practical career tools and skills for STEM professionals were discussed in several breakout sessions. Finally, the symposium ended with a panel discussion comprising four diverse and accomplished recent Ph.D. graduates, who discussed mental health and communication issues prior to answering questions asked by trainees. Trainee responses to a post-symposium survey were also positive as trainees reported the following: an increase in knowledge of career paths and hiring sectors, an appreciation for the diversity of the presenters and career paths, and the attainment of at least one new skill or strategy they felt would aid in their graduate school success. In their first semester in the NRT, trainees take an interdisciplinary course covering the high priority convergent research topic targeted by the traineeship. This course is co-taught by faculty of seven different departments and is composed of four units, each focused on a research question requiring extensive interdisciplinary collaboration to be answered. Teams of at least three core faculty with the cumulative expertise needed to answer each question co-teach each unit, emphasizing concepts that students must understand to address the question at hand. During this course, four multi-departmental interdisciplinary student teams are formed, each focusing on – and conducting a critical review of the literature in – one of the research questions. Indeed, emphasis is placed on providing students with the knowledge and tools to find, critically evaluate, summarize, and present literature on the topic.
more »
« less
- Award ID(s):
- 1922694
- PAR ID:
- 10289197
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities.more » « less
-
This study explores synergies of a holistic, interdisciplinary National Science Foundation - National Research Traineeship (NSF-NRT) Program that leverages a Foundry-guided approach5 to foster integrative thinking and problem-solving skills among and between students.6 Specifically, we look at selected outcomes from a course that is required as part of the first-year experience for student trainees participating in this program. As part of this work-in-progress, we offer insight into students’ growth in specific areas related to interdisciplinary communication. The preliminary findings reveal that students are developing skills related to a deeper understanding of real-world applications through interdisciplinary collaboration and that holistic approaches in engineering education can improve student outcomes. Implications and lessons learned are connected to key areas relevant to the Engineering Unleashed framework.more » « less
-
This work-in-progress explores two critical components central to the foundations of our research. The first component is the introduction of a pedagogical approach for fostering collaboration and interdisciplinary communication, which is grounded in principles guided by an innovation-driven learning model (the Renaissance Foundry) and tied to the three core components of the KEEN Entrepreneurial Mindset: Curiosity, Connections, and Creating Value. We emphasize how these three components play a vital role in enhancing communication and collaboration across disciplines, particularly within Foundry-guided activities. The second component describes preliminary work of student teams from a required second-year course in a National Science Foundation National Research Traineeship (NSF-NRT) graduate level program, which included 11 trainees. As part of this work, we showcase the outcomes of their projects, drawing connections to the three C's of the KEEN Mindset, with a specific focus on how "Creating Value" is achieved through effective communication strategies.more » « less
-
In 2019, a National Research Traineeship (NRT) grant from the U.S. National Science Foundation seeded the establishment of a new model for graduate education at Ohio State University – a large, public, land-grant R-1 university in the U.S. Midwest. This grant application involved faculty from eight different colleges within this university (education; engineering; public affairs; arts and sciences; food, agriculture, and environmental sciences; business; law). The Ohio State EmPOWERment Program in convergent graduate training for a sustainable energy future enrolls Ph.D. students studying any aspect of energy from degree programs any college in Ohio State and engages them in several curricular and co-curricular elements that are designed to dovetail with their Ph.D. degree program requirements in ways that do not extend their time to graduate. The Ohio State EmPOWERment Program established at Ohio State an energy Student Community of Practice and Engagement (SCOPE), a Graduate Interdisciplinary Specialization (GIS), and an undergraduate Research in Sustainable Energy (RISE) summer research experience. Over time a JOULE energy seminar series (JOULE) was added to elevate intellectual engagement in for trainees in The Ohio State EmPOWERment Program and broaden their engagement with researchers across this university. This paper investigates the development and accentuation of innovation capacities of Ph.D. trainees in The Ohio State EmPOWERment Program relative to other Ph.D. students who enrolled in science, technology, engineering, and math (STEM) disciplines at Ohio State and did not participate in the Ohio State EmPOWERment Program. This work considers three different constructs for each of three scales (i.e., Interpersonal, Intrapersonal, Cognitive). Of the nine different constructs, six pass assumption tests and pre-test scores for innovation self-concept, proactivity, social networking, risk-taking or tolerance, creative capacity, and intention to innovate are significant predictors of post-test capacities. Overall, participating in The Ohio State EmPOWERment Program appears to be beneficial and may increase innovation self-concept, proactivity, creative, and intention to innovate capacities.more » « less
An official website of the United States government

