skip to main content


Title: Enhancing Graduate Education by Fully Integrating Research and Professional Skill Development within a Diverse, Inclusive, and Supportive Academy
Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities.  more » « less
Award ID(s):
1922694
NSF-PAR ID:
10183603
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A recently launched National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive and supportive academy. This contribution will describe three initial interventions within this NRT, namely, an onboarding and orientation event, a career exploration symposium, and a multidisciplinary introductory course. In addition, the assessment of each of these interventions – and the outcomes thereof – will be presented and discussed. Prior to the onboarding and orientation event, trainees received the event’s agenda and checklists summarizing pre- and post-event assignments. Pre-event assignments were designed to familiarize trainees with the NRT, the process of drafting an individual development plan (IDP), and the consent form required for traineeship evaluation purposes. During the event – held online due to COVID-19 – and following introductions, trainees were given the opportunity to ask questions stemming from the pre-event assignments. Subsequently, trainees were introduced to several tools (e.g., checklists as well as sample developmental network maps and mentoring contracts) to guide and track their development and progression through the traineeship. The event concluded with a discussion on topics that also constituted post-event assignments, including registering and preparing for both the career exploration symposium and the multidisciplinary introductory course. Survey data collected after the event indicated that trainees valued the opportunity to learn more about the NRT, ask questions, and meet faculty who expressed a commitment to student success. Shortly thereafter, trainees attended a career exploration symposium and moderated sessions featuring speakers representing careers of interest. Indeed, the symposium was purposely designed to expose trainees to a wide range of career pathways. In addition, practical career tools and skills for STEM professionals were discussed in several breakout sessions. Finally, the symposium ended with a panel discussion comprising four diverse and accomplished recent Ph.D. graduates, who discussed mental health and communication issues prior to answering questions asked by trainees. Trainee responses to a post-symposium survey were also positive as trainees reported the following: an increase in knowledge of career paths and hiring sectors, an appreciation for the diversity of the presenters and career paths, and the attainment of at least one new skill or strategy they felt would aid in their graduate school success. In their first semester in the NRT, trainees take an interdisciplinary course covering the high priority convergent research topic targeted by the traineeship. This course is co-taught by faculty of seven different departments and is composed of four units, each focused on a research question requiring extensive interdisciplinary collaboration to be answered. Teams of at least three core faculty with the cumulative expertise needed to answer each question co-teach each unit, emphasizing concepts that students must understand to address the question at hand. During this course, four multi-departmental interdisciplinary student teams are formed, each focusing on – and conducting a critical review of the literature in – one of the research questions. Indeed, emphasis is placed on providing students with the knowledge and tools to find, critically evaluate, summarize, and present literature on the topic. 
    more » « less
  2. Disasters are becoming more frequent as the global climate changes, and recovery efforts require the cooperation and collaboration of experts and community members across disciplines. The DRRM program, funded through the National Science Foundation (NSF) Research Traineeship (NRT), is an interdisciplinary graduate program that brings together faculty and graduate students from across the university to develop new, transdisciplinary ways of solving disaster-related issues. The core team includes faculty from business, engineering, education, science, and urban planning fields. The overall objective of the program is to create a community of practice amongst the graduate students and faculty to improve understanding and support proactive decision-making related to disasters and disaster management. The specific educational objectives of the program are (1) context mastery and community building, (2) transdisciplinary integration and professional development, and (3) transdisciplinary research. The program’s educational research and assessment activities include program development, trainee learning and development, programmatic educational research, and institutional transformation. The program is now in its fourth year of student enrollment. Core courses on interdisciplinary research methods in disaster resilience are in place, engaging students in domain-specific research related to natural hazards, resilience, and recovery, and in methods of interdisciplinary and transdisciplinary collaboration. In addition to courses, the program offers a range of professional development opportunities through seminars and workshops. Since the program’s inception, the core team has expanded both the numbers of faculty and students and the range of academic disciplines involved in the program, including individuals from additional science and engineering fields as well as those from natural resources and the social sciences. At the same time, the breadth of disciplines and the constraints of individual academic programs have posed substantial structural challenges in engaging students in the process of building interdisciplinary research identities and in building the infrastructure needed to sustain the program past the end of the grant. Our poster and paper will identify major program accomplishments, but also draw on interviews with students to examine the structural challenges and potential solution paths associated with a program of this breadth. Critical opportunities for sustainability and engagement have emerged through integration with a larger university-level center as well as through increased flexibility in program requirements and additional mechanisms for student and faculty collaboration. 
    more » « less
  3. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  4. null (Ed.)
    High Performance Computing (HPC) stands at the forefront of engineering innovation. With affordable and advanced HPC resources more readily accessible than ever before, computational simulation of complex physical phenomena becomes an increasingly attractive strategy to predict the physical behavior of diverse engineered systems. Furthermore, novel applications of HPC in engineering are highly interdisciplinary, requiring advanced skills in mathematical modeling, algorithm development as well as programming skills for parallel, distributed and concurrent architectures and environments. This and other possible reasons have created a shortage of qualified workforce to conduct the much-needed research and development in these areas. This paper describes our experience with mentoring a cohort of ten high achieving undergraduate students in Summer 2019 to conduct engineering HPC research for ten weeks in X University. Our mentoring activity was informed and motivated by an initial informal study with the goal to learn the roles and status of HPC in engineering research and what can be improved to make more effective use of it. Through a combination of email surveys, in-person interviews, and a manual analysis of faculty research profiles in X University, we learn several lessons. First, a large proportion of the engineering faculty conducts research that is highly mathematical and computational and driven by disciplinary sciences, where simulation and HPC are widely needed as solutions. Second, due to the lack of resources to provide the necessary training in software development to their students, the interviewed engineering groups are limited in their ability to fully leveraging HPC capability in their research. Therefore, novel pathways for training and educating engineering researchers in HPC software development must be explored in order to further advance the engineering research capability in HPC. With a multi-year support from NSF, our summer research mentoring activities were able to accommodate ten high-achieving undergraduate students recruited from across the USA and their faculty mentors on the theme of HPC applications in engineering research. We describe the processes of students recruitment and selection, training and engagement, research mentoring, and professional development for the students. Best practices and lessons learned are identified and summarized based on our own observations and the evaluation conducted by an independent evaluator. In particular, improvements are being planned so as to deliver a more wholistic and rigorous research experience for future cohorts. 
    more » « less
  5. null (Ed.)
    The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding and theory of the causes and consequences of changes in biodiversity and at the interface of plant physiology, ecology and evolution. INTELLECTUAL MERIT The Institute brings together a diverse, gender-balanced and highly productive team with significant leadership experience that spans biological disciplines and career stages and is poised to integrate biology in new ways. Together, the team will harness the potential of spectral biology, experiments, observations and synthetic modeling in a manner never before possible to transform understanding of how variation within and among biological scales drives plant and ecosystem responses to global change over diurnal, seasonal and millennial time scales. In doing so, it will use and advance state-of-the-art theory. The institute team posits that the designed projects will unearth transformative understanding and biological rules at each of the various scales that will enable an unprecedented capacity to discern the linkages between physiological, ecological and evolutionary processes in relation to the multi-dimensional nature of biodiversity in this time of massive planetary change. A strength of the proposed Institute is that it leverages prior federal investments in research and formalizes partnerships with foreign institutions heavily invested in related biodiversity research. Most of the planned projects leverage existing research initiatives, infrastructure, working groups, experiments, training programs, and public outreach infrastructure, all of which are already highly synergistic and collaborative, and will bring together members of the overall research and training team. BROADER IMPACTS A central goal of the proposed Institute is to train the next generation of diverse integrative biologists. Post-doctoral, graduate student and undergraduate trainees, recruited from non-traditional and underrepresented groups, including through formal engagement with Native American communities, will receive a range of mentoring and training opportunities. Annual summer training workshops will be offered at UMN and UW as well as training experiences with the Global Change and Biodiversity Research Priority Program (URPP-GCB) at the University of Zurich (UZH) and through the Canadian Airborne Biodiversity Observatory (CABO). The Institute will engage diverse K-12 audiences, the general public and Native American communities through Market Science modules, Minute Earth videos, a museum exhibit and public engagement and educational activities through the Bell Museum of Natural History, the Cedar Creek Ecosystem Science Reserve (CCESR) and the Wisconsin Tribal Conservation Association. 
    more » « less