skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Graduate Education by Fully Integrating Research and Professional Skill Development within a Diverse, Inclusive, and Supportive Academy
Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities.  more » « less
Award ID(s):
1922694
PAR ID:
10183603
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A recently launched National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive and supportive academy. This contribution will describe three initial interventions within this NRT, namely, an onboarding and orientation event, a career exploration symposium, and a multidisciplinary introductory course. In addition, the assessment of each of these interventions – and the outcomes thereof – will be presented and discussed. Prior to the onboarding and orientation event, trainees received the event’s agenda and checklists summarizing pre- and post-event assignments. Pre-event assignments were designed to familiarize trainees with the NRT, the process of drafting an individual development plan (IDP), and the consent form required for traineeship evaluation purposes. During the event – held online due to COVID-19 – and following introductions, trainees were given the opportunity to ask questions stemming from the pre-event assignments. Subsequently, trainees were introduced to several tools (e.g., checklists as well as sample developmental network maps and mentoring contracts) to guide and track their development and progression through the traineeship. The event concluded with a discussion on topics that also constituted post-event assignments, including registering and preparing for both the career exploration symposium and the multidisciplinary introductory course. Survey data collected after the event indicated that trainees valued the opportunity to learn more about the NRT, ask questions, and meet faculty who expressed a commitment to student success. Shortly thereafter, trainees attended a career exploration symposium and moderated sessions featuring speakers representing careers of interest. Indeed, the symposium was purposely designed to expose trainees to a wide range of career pathways. In addition, practical career tools and skills for STEM professionals were discussed in several breakout sessions. Finally, the symposium ended with a panel discussion comprising four diverse and accomplished recent Ph.D. graduates, who discussed mental health and communication issues prior to answering questions asked by trainees. Trainee responses to a post-symposium survey were also positive as trainees reported the following: an increase in knowledge of career paths and hiring sectors, an appreciation for the diversity of the presenters and career paths, and the attainment of at least one new skill or strategy they felt would aid in their graduate school success. In their first semester in the NRT, trainees take an interdisciplinary course covering the high priority convergent research topic targeted by the traineeship. This course is co-taught by faculty of seven different departments and is composed of four units, each focused on a research question requiring extensive interdisciplinary collaboration to be answered. Teams of at least three core faculty with the cumulative expertise needed to answer each question co-teach each unit, emphasizing concepts that students must understand to address the question at hand. During this course, four multi-departmental interdisciplinary student teams are formed, each focusing on – and conducting a critical review of the literature in – one of the research questions. Indeed, emphasis is placed on providing students with the knowledge and tools to find, critically evaluate, summarize, and present literature on the topic. 
    more » « less
  2. An ongoing National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive, and supportive academy. This contribution will describe several interventions within this NRT, namely, a graduate certificate on Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) – which is the research topic of the NRT – field trips to sites related to INFEWS, internships and international experiences. Moreover, the assessment and outcomes of each of these interventions will be discussed. A graduate certificate on INFEWS established through this NRT aims to 1) impart both conceptual and technical knowledge related to INFEWS to students; 2) provide them with training on key transferable skills; and 3) equip them to consider the societal, cultural, behavioral, and economic aspects of research on the food, energy, and water nexus. The starting point of the certificate is a multi-departmental and interdisciplinary course on INFEWS. In a subsequent semester students receive training on key transferrable skills in a course designed to integrate these skills with content covered in the foregoing INFEWS course. Completing these core courses gives students 6 of the 12 credit hours needed to attain the certificate. Students earn the other 6 credits by choosing from a list of elective courses. Notably, courses fulfill both certificate and degree requirements, so anticipated time-to-degree is not extended. The certificate is evaluated by assessing student learning outcomes with multiple measures, which include teacher course evaluations of individual courses, the rubric used to review a research proposal that students prepare in the transferable skills course, a professional skills dossier, competency assessments, and student post-surveys. While field trips to facilities related to INFEWS and internships at sites best aligned with their career interests – inside or outside academia – helped foster a sense of community among trainees and exposed them to various work sites and career paths, international experiences helped them gain a global perspective and appreciation for the international nature of STEM research. Evaluation data related to field trips, internships, and international experiences are collected via student focus group discussions, student post-surveys, student follow-up surveys, and alumni surveys. Additionally, the number and type of internships are tracked, and student placement with the internship host after graduation is also monitored. By sharing a description of these interventions and details about their evaluation as well as their outcomes, this contribution will inform practitioners interested in similar educational programs and experiences of both challenges and opportunities associated with these initiatives. In turn, this will help the higher education community in its pursuit to identify and implement the best and most effective practices. 
    more » « less
  3. While the demand for interdisciplinary knowledge is undeniable, there are formidable challenges when offering graduate education to Engineering students. To address that, we designed an educational research project that delves into the effectiveness of an interdisciplinary National Science Foundation (NSF) Research Trainee (NRT) program for engineering students studying robotics and autonomous systems. This newly funded NRT program aims to train next-generation scientists and engineers with professional skills through interdisciplinary courses such as leadership, business, and psychology in addition to cutting-edge technical knowledge in the field. We are using retrospective surveys and content analysis to identify student experience with interdisciplinary training and education programs. Both quantitative and qualitative analysis evidenced an increased level of confidence in soft skills such as interdisciplinary understanding, communication, and collaboration skills throughout participating in the interdisciplinary NRT program. 
    more » « less
  4. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  5. While over one-third of the U.S. economy and much of our national security infrastructure directly depends on precision timing, there has been to date no educational workforce development program in the US dedicated to training young talent in the timekeeping technologies that underpin our society. The Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT) Program is a new, 5-year National Research Traineeship program funded by the National Science Foundation, designed to train the next generation of graduate (MS and PhD) degree holders in a field of critical important to our nation. ACCEPT will provide a comprehensive training and educational opportunity for trainees from physics, mathematics, and engineering. Trainees will combine coursework across these three departments with professional development in critical areas identified by precision timing experts (teamwork, leadership, ethics, communication), and put their training into practice via research experiences with ACCEPT partners, student-led initiatives, and networking at conferences and workshops. In this paper, we present the current objectives, vision, and methodology of our new program, initial steps toward building a comprehensive training facility, and initial research and demonstration projects. 
    more » « less