Penicillins and cephalosporins belong to the β-lactam antibiotic family, which accounts for more than half of the world market for antibiotics. Misuse of antibiotics harms human health and the environment. Here, we describe an easy, fast, and sensitive optical method for the sensing and discrimination of two penicillin and five cephalosporin antibiotics in buffered water at pH 7.4, using fifth-generation poly (amidoamine) (PAMAM) dendrimers and calcein, a commercially available macromolecular polyelectrolyte and a fluorescent dye, respectively. In aqueous solution at pH 7.4, the dendrimer and dye self-assemble to form a sensor that interacts with carboxylate-containing antibiotics through electrostatic interaction, monitored through changes in the dye’s spectroscopic properties. This response was captured through absorbance, fluorescence emission, and fluorescence anisotropy. The resulting data set was processed through linear discriminant analysis (LDA), a common pattern-base recognition method, for the differentiation of cephalosporins and penicillins. By pre-hydrolysis of the β-lactam rings under basic conditions, we were able to increase the charge density of the analytes, allowing us to discriminate the seven analytes at a concentration of 5 mM, with a limit of discrimination of 1 mM.
more »
« less
Discrimination and Quantitation of Biologically Relevant Carboxylate Anions Using A [Dye•PAMAM] Complex
Carboxylate anions are analytical targets with environmental and biological relevance, whose detection is often challenging in aqueous solutions. We describe a method for discrimination and quantitation of carboxylates in water buffered to pH 7.4 based on their differential interaction with a supramolecular fluorescent sensor, self-assembled from readily available building blocks. A fifth-generation poly(amidoamine) dendrimer (PAMAM G5), bound to organic fluorophores (calcein or pyranine) through noncovalent interactions, forms a [dye•PAMAM] complex responsive to interaction with carboxylates. The observed changes in absorbance, and in fluorescence emission and anisotropy, were interpreted through linear discriminant analysis (LDA) and principal component analysis (PCA) to differentiate 10 structurally similar carboxylates with a limit of discrimination around 100 μM. The relationship between the analytes’ chemical structures and the system’s response was also elucidated. This insight allowed us to extend the system’s capabilities to the simultaneous identification of the nature and concentration of unknown analytes, with excellent structural identification results and good concentration recovery, an uncommon feat for a pattern-based sensing system.
more »
« less
- Award ID(s):
- 1632825
- PAR ID:
- 10289259
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 3637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe a method for the differentiation of carboxylate anions on disposable paper supports (common printer paper, filter paper, chromatography paper), based on differential patterns of interactions between carboxylates and a fluorescent sensing system. The sensor was built from commercially available components, namely a polycationic fifth generation amine-terminated poly(amidoamine) dendrimer (PAMAM G5) and a small organic fluorophore (calcein) through non-covalent interactions. The assay's physical dimensions were chosen to conform to the microwell plate standard so detection could be carried out on widely available plate reader instrumentation. The sensing complex was first deposited in spots on a paper support to prepare the sensor strip; a carboxylate solution was then loaded on each spot. Nuanced changes in fluorescence were associated with carboxylate binding to the PAMAM dendrimer, characteristic of the structure and affinity of each carboxylate. Such signal changes, interpreted through Linear Discriminant Analysis (LDA), contained enough information to recognize and successfully discriminate most anions in the panel. Among the substrates we tested, chromatography paper was the most promising. The relationship between the structure of the carboxylates and the patterns giving rise to their differentiation was also discussed. Finally, the long-term stability (“shelf life”) of the pre-assembled [calcein·dendrimer] sensing system was found to be excellent when deposited on paper support.more » « less
-
Abstract We present a fundamental study that supports the feasibility of delaying the onset of presbyopia and age‐related cataracts via the utilization of surface‐functionalized poly(amidoamine) (PAMAM) dendrimers. These PAMAM derivatives are known to have the added benefit of permeating the human cornea with possible absorption/distribution into the crystalline lens, indicating the potential for use in a topically applied eye solution. Mature onset cataract formation occurs because of γ‐crystallin and β‐crystallin aggregation in the human lens over time. As the molecular chaperone α‐crystallin becomes saturated with unfolded γ‐crystallins, the ability to prevent aggregation becomes limited. PAMAM dendrimers containing either sodium carboxylate‐ or succinamic acid‐surface functionality are employed as synthetic chaperones to evaluate the effect of structure and local concentration on γ‐crystallin aggregation. The chaperone/γ‐crystallin blends are examined via DLS, zeta potential measurements, and fluorescence spectroscopy. DLS studies show a reduction in hydrodynamic size for γ‐crystallin in the presence of PAMAM dendrimers and their small molecule counterparts compared to the control. Structural identity and local concentration of functionality are found to impact solution behavior. Zeta potential measurements and fluorescence studies indicate that synthetic chaperones can have multiple modes of non‐covalent interactions and are the most effective in preventing or reducing γ‐crystallin aggregation.more » « less
-
Suuberg, Eric (Ed.)This study introduces an atmospheric pressure chemical ionization method that relies on low-energy thermal collisions (i.e., <0.05 eV) of aerosolized analytes with bipolar ions pre-seeded in a sample dilution flow and allows for the detection of weakly bound molecular clusters. Herein, the potential of the method is explored in the context of soot inception by performing mass spectrometric analysis of a laminar premixed flame of ethylene and air whose products are sampled through a tiny orifice and quickly diluted in nitrogen pre-flowed through a Kr85 based neutralizer to generate the bipolar ions. Analyses were performed with an Atmospheric Pressure Interface Time-of-Flight (APi-TOF, Tofwerk AG) Mass Spectrometer whose high sensitivity, mass accuracy, and resolution (over 4000) allowed for the discrimination of the flame products from the pre-seeded ions. Since ionization of neutrals occurs by either ion attachment or charge exchange following ion collision, the identification of the origin of each peak in the measured mass spectra is not-trivial. Nevertheless, the results provide valuable information on the overall elemental composition of the neutral flame products ionized in either polarity. Results show that the clustering of hydrocarbons lighter than 400 Da and having a C/H ratio between 2 and 3 leads to soot inception in the flame. The dehydrogenation of the flame products, expected to occur as they are convected in the flame, is observed only for measurements in positive polarity because of a higher probability of soot nuclei and precursors to get a positive rather than a negative charge.more » « less
-
Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform’s biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform’s sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.more » « less
An official website of the United States government

