skip to main content


Title: Beta-Lactam Antibiotic Discrimination Using a Macromolecular Sensor in Water at Neutral pH
Penicillins and cephalosporins belong to the β-lactam antibiotic family, which accounts for more than half of the world market for antibiotics. Misuse of antibiotics harms human health and the environment. Here, we describe an easy, fast, and sensitive optical method for the sensing and discrimination of two penicillin and five cephalosporin antibiotics in buffered water at pH 7.4, using fifth-generation poly (amidoamine) (PAMAM) dendrimers and calcein, a commercially available macromolecular polyelectrolyte and a fluorescent dye, respectively. In aqueous solution at pH 7.4, the dendrimer and dye self-assemble to form a sensor that interacts with carboxylate-containing antibiotics through electrostatic interaction, monitored through changes in the dye’s spectroscopic properties. This response was captured through absorbance, fluorescence emission, and fluorescence anisotropy. The resulting data set was processed through linear discriminant analysis (LDA), a common pattern-base recognition method, for the differentiation of cephalosporins and penicillins. By pre-hydrolysis of the β-lactam rings under basic conditions, we were able to increase the charge density of the analytes, allowing us to discriminate the seven analytes at a concentration of 5 mM, with a limit of discrimination of 1 mM.  more » « less
Award ID(s):
1632825
NSF-PAR ID:
10334692
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
19
ISSN:
1424-8220
Page Range / eLocation ID:
6384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Carboxylate anions are analytical targets with environmental and biological relevance, whose detection is often challenging in aqueous solutions. We describe a method for discrimination and quantitation of carboxylates in water buffered to pH 7.4 based on their differential interaction with a supramolecular fluorescent sensor, self-assembled from readily available building blocks. A fifth-generation poly(amidoamine) dendrimer (PAMAM G5), bound to organic fluorophores (calcein or pyranine) through noncovalent interactions, forms a [dye•PAMAM] complex responsive to interaction with carboxylates. The observed changes in absorbance, and in fluorescence emission and anisotropy, were interpreted through linear discriminant analysis (LDA) and principal component analysis (PCA) to differentiate 10 structurally similar carboxylates with a limit of discrimination around 100 μM. The relationship between the analytes’ chemical structures and the system’s response was also elucidated. This insight allowed us to extend the system’s capabilities to the simultaneous identification of the nature and concentration of unknown analytes, with excellent structural identification results and good concentration recovery, an uncommon feat for a pattern-based sensing system. 
    more » « less
  2. Villanueva, Laura (Ed.)
    ABSTRACT Phylogenetic distribution and extended spectrum β-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond ( P <  0.01), freshwater river ( P <  0.01) or brackish river (P <  0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance ( P <  0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup ( P <  0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected β-lactam resistance genes were bla CMY-2 and bla TEM . Water type was a factor for bla CTX-M gene detection ( P <  0.05). Phenotypic resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and β-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum β-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of β-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health. 
    more » « less
  3. null (Ed.)
    New Delhi metallo-β-lactamase (NDM) grants resistance to a broad spectrum of β-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Limited zinc availability adversely impacts the ability of NDM-1 to provide resistance, but a number of clinical variants have emerged that are more resistant to zinc scarcity (e.g., NDM-15). To provide a novel tool to better study metal ion sequestration in host–pathogen interactions, we describe the development of a fluorescent probe that reports on the dynamic metalation state of NDM within Escherichia coli. The thiol-containing probe selectively coordinates the dizinc metal cluster of NDM and results in a 17-fold increase in fluorescence intensity. Reversible binding enables competition and time-dependent studies that reveal fluorescence changes used to detect enzyme localization, substrate and inhibitor engagement, and changes to metalation state through the imaging of live E. coli using confocal microscopy. NDM-1 is shown to be susceptible to demetalation by intracellular and extracellular metal chelators in a live-cell model of zinc dyshomeostasis, whereas the NDM-15 metalation state is shown to be more resistant to zinc flux. The development of this reversible turn-on fluorescent probe for the metalation state of NDM provides a new tool for monitoring the impact of metal ion sequestration by host defense mechanisms and for detecting inhibitor–target engagement during the development of therapeutics to counter this resistance determinant. 
    more » « less
  4. Gram-negative bacteria expressing class A β-lactamases pose a serious health threat due to their ability to inactivate all β-lactam antibiotics. The acyl–enzyme intermediate is a central milestone in the hydrolysis reaction catalyzed by these enzymes. However, the protonation states of the catalytic residues in this complex have never been fully analyzed experimentally due to inherent difficulties. To help unravel the ambiguity surrounding class A β-lactamase catalysis, we have used ultrahigh-resolution X-ray crystallography and the recently approved β-lactamase inhibitor avibactam to trap the acyl–enzyme complex of class A β-lactamase CTX-M-14 at varying pHs. A 0.83-Å-resolution CTX-M-14 complex structure at pH 7.9 revealed a neutral state for both Lys73 and Glu166. Furthermore, the avibactam hydroxylamine-O-sulfonate group conformation varied according to pH, and this conformational switch appeared to correspond to a change in the Lys73 protonation state at low pH. In conjunction with computational analyses, our structures suggest that Lys73 has a perturbed acid dissociation constant (pKa) compared with acyl–enzyme complexes with β-lactams, hindering its function to deprotonate Glu166 and the initiation of the deacylation reaction. Further NMR analysis demonstrated Lys73 pKato be ∼5.2 to 5.6. Together with previous ultrahigh-resolution crystal structures, these findings enable us to follow the proton transfer process of the entire acylation reaction and reveal the critical role of Lys73. They also shed light on the stability and reversibility of the avibactam carbamoyl acyl–enzyme complex, highlighting the effect of substrate functional groups in influencing the protonation states of catalytic residues and subsequently the progression of the reaction.

     
    more » « less
  5. Antibiotic distribution and analysis within liquid and solid fractions of manure are highly variable due to each compound’s respective physiochemical properties. This study developed and evaluated a uniform method extracting 10 antibiotics from 4 antibiotic classes (tetracycline, sulfonamides, macrolides, and β-lactam) from unprocessed manure, solid–liquid separated manure, and composted solids. Through systematic manipulation of previously published liquid chromatography tandem mass spectrometry methods; this study developed an extraction protocol with optimized recovery efficiencies for varied manure substrates. The method includes a two-step, liquid-solid extraction using 10 mL of 0.1 M EDTA-McIlviane buffer followed by 10 mL of methanol. Antibiotics recoveries from unprocessed manure, separated liquids, separated solids, and heat-treated solids using the two-step extraction method had relative standard deviations < 30% for all but ceftiofur. Total antibiotic recoveries were 67–131% for tetracyclines, 56% for sulfonamide, 49–53% for macrolides, and 1.3–66% for β-lactams. This is the first study to use one protocol to assess four classes of antibiotics in liquid and solid manure fractions. This study allowed for more precise risk assessment of antibiotic transport in manure waste stream applied to fields as a liquid or solid compost. 
    more » « less