Let C be a class of graphs closed under taking induced subgraphs. We say that C has the clique-stable set separation property if there exists c∈N such that for every graph G∈C there is a collection P of partitions (X,Y) of the vertex set of G with |P|≤|V(G)|c and with the following property: if K is a clique of G, and S is a stable set of G, and K∩S=∅, then there is (X,Y)∈P with K⊆X and S⊆Y. In 1991 M. Yannakakis conjectured that the class of all graphs has the clique-stable set separation property, but this conjecture was disproved by Göös in 2014. Therefore it is now of interest to understand for which classes of graphs such a constant c exists. In this paper we define two infinite families S,K of graphs and show that for every S∈S and K∈K, the class of graphs with no induced subgraph isomorphic to S or K has the clique-stable set separation property.
more »
« less
Subdivided Claws and the Clique-Stable Set Separation Property
Let C be a class of graphs closed under taking induced subgraphs. We say that C has the clique-stable set separation property if there exists c ∈ N such that for every graph G ∈ C there is a collection P of partitions (X, Y ) of the vertex set of G with |P| ≤ |V (G)| c and with the following property: if K is a clique of G, and S is a stable set of G, and K ∩ S = ∅, then there is (X, Y ) ∈ P with K ⊆ X and S ⊆ Y . In 1991 M. Yannakakis conjectured that the class of all graphs has the clique-stable set separation property, but this conjecture was disproved by M. G¨o¨os in 2014. Therefore it is now of interest to understand for which classes of graphs such a constant c exists. In this paper we define two infinite families S, K of graphs and show that for every S ∈ S and K ∈ K, the class of graphs with no induced subgraph isomorphic to S or K has the clique-stable set separation property.
more »
« less
- Award ID(s):
- 1763817
- PAR ID:
- 10289403
- Date Published:
- Journal Name:
- MATRIX book series
- ISSN:
- 2523-3041
- Page Range / eLocation ID:
- 483-487
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $$\mathcal{H}$$ of graphs, we say a graph $$G$$ is $$\mathcal{H}$$-_free_ if no induced subgraph of $$G$$ is isomorphic to a member of $$\mathcal{H}$$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $$c$$ for which every (theta, triangle)-free graph $$G$$ has treewidth at most $$c\log (|V(G)|)$$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth.Our main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $$G$$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $$k$$-Coloring (for fixed $$k$$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph.more » « less
-
Abstract In 1977, Erd̋s and Hajnal made the conjecture that, for every graph $$H$$, there exists $c>0$ such that every $$H$$-free graph $$G$$ has a clique or stable set of size at least $$|G|^{c}$$, and they proved that this is true with $$ |G|^{c}$$ replaced by $$2^{c\sqrt{\log |G|}}$$. Until now, there has been no improvement on this result (for general $$H$$). We prove a strengthening: that for every graph $$H$$, there exists $c>0$ such that every $$H$$-free graph $$G$$ with $$|G|\ge 2$$ has a clique or stable set of size at least $$ \begin{align*} &2^{c\sqrt{\log |G|\log\log|G|}}.\end{align*} $$ Indeed, we prove the corresponding strengthening of a theorem of Fox and Sudakov, which in turn was a common strengthening of theorems of Rödl, Nikiforov, and the theorem of Erd̋s and Hajnal mentioned above.more » « less
-
Abstract The Erdős–Hajnal conjecture says that for every graph there exists such that every graph not containing as an induced subgraph has a clique or stable set of cardinality at least . We prove that this is true when is a cycle of length five. We also prove several further results: for instance, that if is a cycle and is the complement of a forest, there exists such that every graph containing neither of as an induced subgraph has a clique or stable set of cardinality at least .more » « less
-
Let $$x,y\in (0,1]$$, and let $A,B,C$ be disjoint nonempty stable subsets of a graph $$G$$, where every vertex in $$A$$ has at least $x|B|$ neighbours in $$B$$, and every vertex in $$B$$ has at least $y|C|$ neighbours in $$C$$, and there are no edges between $A,C$. We denote by $$\phi(x,y)$$ the maximum $$z$$ such that, in all such graphs $$G$$, there is a vertex $$v\in C$$ that is joined to at least $z|A|$ vertices in $$A$$ by two-edge paths. This function has some interesting properties: we show, for instance, that $$\phi(x,y)=\phi(y,x)$$ for all $x,y$, and there is a discontinuity in $$\phi(x,x)$$ when $1/x$ is an integer. For $z=1/2, 2/3,1/3,3/4,2/5,3/5$, we try to find the (complicated) boundary between the set of pairs $(x,y)$ with $$\phi(x,y)\ge z$$ and the pairs with $$\phi(x,y)1/3$.more » « less