skip to main content


Title: Visual Remapping
Our visual system is fundamentally retinotopic. When viewing a stable scene, each eye movement shifts object features and locations on the retina. Thus, sensory representations must be updated, or remapped, across saccades to align presaccadic and postsaccadic inputs. The earliest remapping studies focused on anticipatory, presaccadic shifts of neuronal spatial receptive fields. Over time, it has become clear that there are multiple forms of remapping and that different forms of remapping may be mediated by different neural mechanisms. This review attempts to organize the various forms of remapping into a functional taxonomy based on experimental data and ongoing debates about forward versus convergent remapping, presaccadic versus postsaccadic remapping, and spatial versus attentional remapping. We integrate findings from primate neurophysiological, human neuroimaging and behavioral, and computational modeling studies. We conclude by discussing persistent open questions related to remapping, with specific attention to binding of spatial and featural information during remapping and speculations about remapping's functional significance. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1848939
NSF-PAR ID:
10289560
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Vision Science
Volume:
7
Issue:
1
ISSN:
2374-4642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially‐defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.

     
    more » « less
  2. Abstract Aim

    Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant functional traits and phylogenetic biome conservatism provides a useful approach for characterizing biomes. We focus on the little‐known succulent biome, a trans‐continentally distributed assemblage of succulent‐rich, drought‐deciduous, fire‐free forest, thicket and scrub vegetation as a useful exemplar biome to gain insights into these questions.

    Location

    Global lowland (sub)tropics.

    Time period

    Present.

    Major taxa studied

    Angiosperms.

    Methods

    We use a model ensemble approach to model the distribution of 884 species of stem succulents, a plant functional group representing a striking example of evolutionary convergence. Using this model, phylogenies, and species occurrence data, we quantify phylogenetic succulent biome conservatism for 10 non‐succulent trans‐continental plant clades including prominent elements of the succulent biome, representing over 800 species.

    Results

    The geographical and climatic distributions of stem succulents provide an objective and quantitative proxy for mapping the distribution of the succulent biome. High fractions of succulent biome occupancy across continents suggest all 10 non‐succulent study clades are phylogenetically conserved within the succulent biome.

    Main conclusions

    The trans‐continental succulent and savanna biomes both show evolutionary convergence in key biome‐related plant functional traits. However, in contrast to the savanna biome, which was apparently assembled via repeated local recruitment of lineages via biome shifts from adjacent biomes within continents, the succulent biome forms a coherent trans‐continental evolutionary arena for drought‐adapted tropical biome conserved lineages. Recognizing the important functional differences between the succulent‐rich, grass‐poor, fire‐free succulent biome and the grass‐dominated, succulent‐poor, fire‐prone savanna biome, and defining them as distinct seasonally dry tropical biomes, occupying essentially non‐overlapping distributions, provides critical insights into tropical biodiversity and the extent of biome stasis versus biome shifting.

     
    more » « less
  3. Abstract

    The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed‐material properties, and flow and sediment regimes. In many rivers, concurrent changes in (1) the composition of riparian vegetation communities as a result of exotic species invasion and (2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review howTamarix, which has invaded many southwestern US waterways, andPopulusspecies, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modelling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found that differences in the crown morphology, stem density, and flexibility ofTamarixcompared toPopulusinfluenced near‐bed flow velocities in a manner that favoured aggradation associated withTamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different forTamarix‐ versusPopulus‐dominated reaches, with faster and greater geomorphic adjustments forTamarix. Collectively, our studies show how plant‐trait differences betweenTamarixandPopulus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure, in addition to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.

     
    more » « less
  4. Abstract

    Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.

     
    more » « less
  5. Abstract

    Phase precessing place cells encode spatial information on fine timescales via the timing of their spikes. This phase code has been extensively studied on linear tracks and for short runs in the open field. However, less is known about the phase code on unconstrained trajectories lasting tens of minutes, typical of open field foraging. In previous work (Monsalve‐Mercado and Leibold, Physical Review Letters, 119, 38101 (2017)), an analytic expression was derived for the spike‐time cross‐correlation between phase precessing place cells during natural foraging in the open field. This expression makes two predictions on how this phase code differs from the linear track case: cross‐correlations are symmetric with respect to time, and they represent the distance between pairs of place fields in that the theta‐filtered cross‐correlations around zero time lag are positive for cells with nearby fields while they are negative for those with fields further apart. Here we analyze several available open field recordings and show that these predictions hold for pairs of CA1 place cells. We also show that the relationship remains during remapping in CA1, and it is also present in place cells in area CA3. For CA1 place cells of Fmr1‐null mice, which exhibit normal place fields but somewhat weaker temporal coordination with respect to theta compared to wild type, the cross‐correlations still remain symmetric but the relationship to place field overlap is largely lost. The relationship discussed here describes how spatial information is communicated by place cells to downstream areas in a finer theta‐timescale, relevant for learning and memory formation in behavioral tasks lasting tens of minutes in the open field.

     
    more » « less