skip to main content

Title: Fitness tracking reveals task-specific associations between memory, mental health, and physical activity
Abstract

Physical activity can benefit both physical and mental well-being. Different forms of exercise (e.g., aerobic versus anaerobic; running versus walking, swimming, or yoga; high-intensity interval training versus endurance workouts; etc.) impact physical fitness in different ways. For example, running may substantially impact leg and heart strength but only moderately impact arm strength. We hypothesized that the mental benefits of physical activity might be similarly differentiated. We focused specifically on how different intensities of physical activity might relate to different aspects of memory and mental health. To test our hypothesis, we collected (in aggregate) roughly a century’s worth of fitness data. We then asked participants to fill out surveys asking them to self-report on different aspects of their mental health. We also asked participants to engage in a battery of memory tasks that tested their short and long term episodic, semantic, and spatial memory performance. We found that participants with similar physical activity habits and fitness profiles tended to also exhibit similar mental health and task performance profiles. These effects were task-specific in that different physical activity patterns or fitness characteristics varied with different aspects of memory, on different tasks. Taken together, these findings provide foundational work for designing physical more » activity interventions that target specific components of cognitive performance and mental health by leveraging low-cost fitness tracking devices.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10369674
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performancemore »measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance.« less
  2. Background Mobile health technology has demonstrated the ability of smartphone apps and sensors to collect data pertaining to patient activity, behavior, and cognition. It also offers the opportunity to understand how everyday passive mobile metrics such as battery life and screen time relate to mental health outcomes through continuous sensing. Impulsivity is an underlying factor in numerous physical and mental health problems. However, few studies have been designed to help us understand how mobile sensors and self-report data can improve our understanding of impulsive behavior. Objective The objective of this study was to explore the feasibility of using mobile sensor data to detect and monitor self-reported state impulsivity and impulsive behavior passively via a cross-platform mobile sensing application. Methods We enrolled 26 participants who were part of a larger study of impulsivity to take part in a real-world, continuous mobile sensing study over 21 days on both Apple operating system (iOS) and Android platforms. The mobile sensing system (mPulse) collected data from call logs, battery charging, and screen checking. To validate the model, we used mobile sensing features to predict common self-reported impulsivity traits, objective mobile behavioral and cognitive measures, and ecological momentary assessment (EMA) of state impulsivity and constructsmore »related to impulsive behavior (ie, risk-taking, attention, and affect). Results Overall, the findings suggested that passive measures of mobile phone use such as call logs, battery charging, and screen checking can predict different facets of trait and state impulsivity and impulsive behavior. For impulsivity traits, the models significantly explained variance in sensation seeking, planning, and lack of perseverance traits but failed to explain motor, urgency, lack of premeditation, and attention traits. Passive sensing features from call logs, battery charging, and screen checking were particularly useful in explaining and predicting trait-based sensation seeking. On a daily level, the model successfully predicted objective behavioral measures such as present bias in delay discounting tasks, commission and omission errors in a cognitive attention task, and total gains in a risk-taking task. Our models also predicted daily EMA questions on positivity, stress, productivity, healthiness, and emotion and affect. Perhaps most intriguingly, the model failed to predict daily EMA designed to measure previous-day impulsivity using face-valid questions. Conclusions The study demonstrated the potential for developing trait and state impulsivity phenotypes and detecting impulsive behavior from everyday mobile phone sensors. Limitations of the current research and suggestions for building more precise passive sensing models are discussed. Trial Registration ClinicalTrials.gov NCT03006653; https://clinicaltrials.gov/ct2/show/NCT03006653« less
  3. Abstract

    Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance (optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences in cognition.

  4. Stay at home order during the COVID-19 helps flatten the curve but ironically, instigate mental health problems among the people who have Substance Use Disorders. Measuring the electrical activity signals in brain using off-the-shelf consumer wearable devices such as smart wristwatch and mapping them in real time to underlying mood, behavioral and emotional changes play striking roles in postulating mental health anomalies. In this work, we propose to implement a wearable, On-device Mental Anomaly Detection (OMAD) system to detect anomalous behaviors and activities that render to mental health problems and help clinicians to design effective intervention strategies. We propose an intrinsic artifact removal model on Electroencephalogram (EEG) signal to better correlate the fine-grained behavioral changes. We design model compression technique on the artifact removal and activity recognition (main) modules. We implement a magnitude-based weight pruning technique both on convolutional neural network and Multilayer Perceptron to employ the inference phase on Nvidia Jetson Nano; one of the tightest resource-constrained devices for wearables. We experimented with three different combinations of feature extractions and artifact removal approaches. We evaluate the performance of OMAD in terms of accuracy, F1 score, memory usage and running time for both unpruned and compressed models using EEG datamore »from both control and treatment (alcoholic) groups for different object recognition tasks. Our artifact removal model and main activity detection model achieved about ≈ 93% and 90% accuracy, respectively with significant reduction in model size (70%) and inference time (31%).« less
  5. The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majoritymore »voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future« less