skip to main content


Title: Evolution of an asymptomatic first stage of infection in a heterogeneous population
Pathogens evolve different life-history strategies, which depend in part on differences in their host populations. A central feature of hosts is their population structure (e.g. spatial). Additionally, hosts themselves can exhibit different degrees of symptoms when newly infected; this latency is a key life-history property of pathogens. With an evolutionary-epidemiological model, we examine the role of population structure on the evolutionary dynamics of latency. We focus on specific power-law-like formulations for transmission and progression from the first infectious stage as a function of latency, assuming that the across-group to within-group transmission ratio increases if hosts are less symptomatic. We find that simple population heterogeneity can lead to local evolutionarily stable strategies (ESSs) at zero and infinite latency in situations where a unique ESS exists in the corresponding homogeneous case. Furthermore, there can exist more than one interior evolutionarily singular strategy. We find that this diversity of outcomes is due to the (possibly slight) advantage of across-group transmission for pathogens that produce fewer symptoms in a first infectious stage. Thus, our work reveals that allowing individuals without symptoms to travel can have important unintended evolutionary effects and is thus fundamentally problematic in view of the evolutionary dynamics of latency.  more » « less
Award ID(s):
2027908 1917819
NSF-PAR ID:
10289568
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
179
ISSN:
1742-5662
Page Range / eLocation ID:
20210175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathogens exhibit a rich variety of life history strategies, shaped by natural selection. An important pathogen life history characteristic is the propensity to induce an asymptomatic yet productive (transmissive) stage at the beginning of an infection. This characteristic is subject to complex trade-offs, ranging from immunological considerations to population-level social processes. We aim to classify the evolutionary dynamics of such asymptomatic behavior of pathogens (hereafter “latency”) in order to unify epidemiology and evolution for this life history strategy. We focus on a simple epidemiological model with two infectious stages, where hosts in the first stage can be partially or fully asymptomatic. Immunologically, there is a trade-off between transmission and progression in this first stage. For arbitrary trade-offs, we derive different conditions that guarantee either at least one evolutionarily stable strategy (ESS) at zero, some, or maximal latency of the first stage or, perhaps surprisingly, at least one unstable evolutionarily singular strategy. In this latter case, there is bistability between zero and nonzero (possibly maximal) latency. We then prove the uniqueness of interior evolutionarily singular strategies for power-law and exponential trade-offs: Thus, bistability is always between zero and maximal latency. Overall, previous multistage infection models can be summarized with a single model that includes evolutionary processes acting on latency. Since small changes in parameter values can lead to abrupt transitions in evolutionary dynamics, appropriate disease control strategies could have a substantial impact on the evolution of first-stage latency.

     
    more » « less
  2. null (Ed.)
    Pathogens have evolved a variety of life-history strategies. An important strategy consists of successful transmission by an infected host before the appearance of symptoms, that is, while the host is still partially or fully asymptomatic. During this initial stage of infection, it is possible for another pathogen to superinfect an already infected host and replace the previously infecting pathogen. Here, we study the effect of superinfection during the first stage of an infection on the evolutionary dynamics of the degree to which the host is asymptomatic (host latency) in that same stage. We find that superinfection can lead to major differences in evolutionary behaviour. Most strikingly, the duration of immunity following infection can significantly influence pathogen evolutionary dynamics, whereas without superinfection the outcomes are independent of host immunity. For example, changes in host immunity can drive evolutionary transitions from a fully symptomatic to a fully asymptomatic first infection stage. Additionally, if superinfection relative to susceptible infection is strong enough, evolution can lead to a unique strategy of latency that corresponds to a local fitness minimum, and is therefore invasible by nearby mutants. Thus, this strategy is a branching point, and can lead to coexistence of pathogens with different latencies. Furthermore, in this new framework with superinfection, we also find that there can exist two interior singular strategies. Overall, new evolutionary outcomes can cascade from superinfection. 
    more » « less
  3. Abstract

    Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age‐structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.

    One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.

    Here we evaluated the capacity of three wild plant species (Silene latifolia,S. vulgarisandDianthus pavonius) to evolve resistance to their anther‐smut pathogens (Microbotryumfungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.

    Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.

    In two of the plant species,S. latifoliaandD. pavonius, resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families.

    Synthesis. These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age‐dependent resistance in three well‐studied wild host–pathogen systems.

     
    more » « less
  4. Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were “environmentally mediated” to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing. 
    more » « less
  5. Abstract

    Traditional mechanistic trade-offs between transmission and parasite latency period length are foundational for nearly all theories on the evolution of parasite life-history strategies. Prior theoretical studies demonstrate that seasonal host activity can generate a trade-off for obligate-host killer parasites that selects for intermediate latency periods in the absence of a mechanistic trade-off between transmission and latency period lengths. Extensions of these studies predict that host seasonal patterns can lead to evolutionary bistability for obligate-host killer parasites in which two evolutionarily stable strategies, a shorter and longer latency period, are possible. Here we demonstrate that these conclusions from previously published studies hold for non-obligate host killer parasites. That is, seasonal host activity can select for intermediate parasite latency periods for non-obligate killer parasites in the absence of a trade-off between transmission and latency period length and can maintain multiple evolutionarily stable parasite life-history strategies. These results reinforce the hypothesis that host seasonal activity can act as a major selective force on parasite life-history evolution by extending the narrower prior theory to encompass a greater range of disease systems.

     
    more » « less