skip to main content


Title: Vaccine nationalism and the dynamics and control of SARS-CoV-2
Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the ongoing SARS-CoV-2 pandemic continues to exert globally, yet vaccine distribution remains unequal among countries. To examine the potential epidemiological and evolutionary impacts of ‘vaccine nationalism’, we extend previous models to include simple scenarios of stockpiling between two regions. In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally. Overall, our results stress the importance of rapid equitable vaccine distribution for global control of the pandemic.  more » « less
Award ID(s):
2027908 1917819
NSF-PAR ID:
10289575
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
ISSN:
0036-8075
Page Range / eLocation ID:
e
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020–2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. Methods We evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020–2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Results We find that allocating a substantial proportion (>75 % ) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. Conclusions Assuming high vaccination coverage (>28 % ) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021. 
    more » « less
  2. null (Ed.)
    Background: COVID-19 vaccines have been approved and made available. While questions of vaccine allocation strategies have received significant attention, important questions remain regarding the potential impact of the vaccine given uncertainties regarding efficacy against transmission, availability, timing, and durability. Methods: We adapted a susceptible-exposed-infectious-recovered (SEIR) model to examine the potential impact on hospitalization and mortality assuming increasing rates of vaccine efficacy, coverage, and administration. We also evaluated the uncertainty of the vaccine to prevent infectiousness as well as the impact on outcomes based on the timing of distribution and the potential effects of waning immunity. Findings: Increased vaccine efficacy against disease reduces hospitalizations and deaths from COVID-19; however, the relative benefit of transmission blocking varied depending on the timing of vaccine distribution. Early in an outbreak, a vaccine that reduces transmission will be relatively more effective than one introduced later in the outbreak. In addition, earlier and accelerated implementation of a less effective vaccine is more impactful than later implementation of a more effective vaccine. These findings are magnified when considering the durability of the vaccine. Vaccination in the spring will be less impactful when immunity is less durable. Interpretation: Policy choices regarding non-pharmaceutical interventions, such as social distancing and face mask use, will need to remain in place longer if the vaccine is less effective at reducing transmission or distributed slower. In addition, the stage of the local outbreak greatly impacts the overall effectiveness of the vaccine in a region and should be considered when allocating vaccines. 
    more » « less
  3. The durability of vaccine-mediated immunity to SARS-CoV-2, the durations to breakthrough infection, and the optimal timings of booster vaccination are crucial knowledge for pandemic response. Here, we applied comparative evolutionary analyses to estimate the durability of immunity and the likelihood of breakthrough infections over time following vaccination by BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford-AstraZeneca), and Ad26.COV2.S (Johnson & Johnson/Janssen). We evaluated anti-Spike (S) immunoglobulin G (IgG) antibody levels elicited by each vaccine relative to natural infection. We estimated typical trajectories of waning and corresponding infection probabilities, providing the distribution of times to breakthrough infection for each vaccine under endemic conditions. Peak antibody levels elicited by messenger RNA (mRNA) vaccines mRNA-1273 and BNT1262b2 exceeded that of natural infection and are expected to typically yield more durable protection against breakthrough infections (median 29.6 mo; 5 to 95% quantiles 10.9 mo to 7.9 y) than natural infection (median 21.5 mo; 5 to 95% quantiles 3.5 mo to 7.1 y). Relative to mRNA-1273 and BNT1262b2, viral vector vaccines ChAdOx1 and Ad26.COV2.S exhibit similar peak anti-S IgG antibody responses to that from natural infection and are projected to yield lower, shorter-term protection against breakthrough infection (median 22.4 mo and 5 to 95% quantiles 4.3 mo to 7.2 y; and median 20.5 mo and 5 to 95% quantiles 2.6 mo to 7.0 y; respectively). These results leverage the tools from evolutionary biology to provide a quantitative basis for otherwise unknown parameters that are fundamental to public health policy decision-making. 
    more » « less
  4. null (Ed.)
    COVID-19 vaccines have been authorized in multiple countries, and more are under rapid development. Careful design of a vaccine prioritization strategy across sociodemographic groups is a crucial public policy challenge given that 1) vaccine supply will be constrained for the first several months of the vaccination campaign, 2) there are stark differences in transmission and severity of impacts from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across groups, and 3) SARS-CoV-2 differs markedly from previous pandemic viruses. We assess the optimal allocation of a limited vaccine supply in the United States across groups differentiated by age and essential worker status, which constrains opportunities for social distancing. We model transmission dynamics using a compartmental model parameterized to capture current understanding of the epidemiological characteristics of COVID-19, including key sources of group heterogeneity (susceptibility, severity, and contact rates). We investigate three alternative policy objectives (minimizing infections, years of life lost, or deaths) and model a dynamic strategy that evolves with the population epidemiological status. We find that this temporal flexibility contributes substantially to public health goals. Older essential workers are typically targeted first. However, depending on the objective, younger essential workers are prioritized to control spread or seniors to directly control mortality. When the objective is minimizing deaths, relative to an untargeted approach, prioritization averts deaths on a range between 20,000 (when nonpharmaceutical interventions are strong) and 300,000 (when these interventions are weak). We illustrate how optimal prioritization is sensitive to several factors, most notably, vaccine effectiveness and supply, rate of transmission, and the magnitude of initial infections. 
    more » « less
  5. The objective is to understand the role of emerging variants, vaccination, and NPI policies on COVID-19 infections and deaths. We aim to identify scenarios in which COVID-19 can be managed such that the death rate from COVID-19 becomes comparable with the combined annual mortality rate from influenza and pneumonia. As a case study for a large urban area, we simulate COVID-19 transmission in King County, Washington, (greater Seattle) using an agent- based simulation model. Calibrated to local epidemiological data, our study uses detailed synthetic population data and includes interactions between vaccination and specific NPIs while considering waning immunity and emergence of variants. Virus mutation scenarios include 12 combinations of infectivity, disease severity, and immune evasiveness. A highly effective pancoronavirus vaccine that works against all strains is considered an optimistic scenario. Our findings highlight the potential benefits of pancoronavirus vaccines that offer enhanced and longer-lasting immunity. We emphasize the crucial role of nonpharmaceutical interventions in reducing COVID-19 deaths regardless of virus mutation scenarios. Owing to highly immune evasive and contagious SARS-CoV-2 variants, most scenarios in this study fail to reduce the mortality of COVID-19 to the level of influenza and pneumonia. However, our findings indicate that periodic vaccinations and a threshold nonpharmaceutical intervention policy may succeed in achieving this goal. This indicates the need for caution and vigilance in managing a continuing COVID-19 epidemic. 
    more » « less