Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3–cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.
more »
« less
Role of Electrostatic Hotspots in the Selectivity of Complement Control Proteins Toward Human and Bovine Complement Inhibition
Poxviruses are dangerous pathogens, which can cause fatal infection in unvaccinated individuals. The causative agent of smallpox in humans, variola virus , is closely related to the bovine vaccinia virus , yet the molecular basis of their selectivity is currently incompletely understood. Here, we examine the role of the electrostatics in the selectivity of the smallpox protein SPICE and vaccinia protein VCP toward the human and bovine complement protein C3b, a key component of the complement immune response. Electrostatic calculations, in-silico alanine-scan and electrostatic hotspot analysis, as introduced by Kieslich and Morikis ( PLoS Comput. Biol . 2012), are used to assess the electrostatic complementarity and to identify sites resistant to local perturbation where the electrostatic potential is likely to be evolutionary conserved. The calculations suggest that the bovine C3b is electrostatically prone to selectively bind its VCP ligand. On the other hand, the human isoform of C3b exhibits a lower electrostatic complementarity toward its SPICE ligand. Yet, the human C3b displays a highly preserved electrostatic core, which suggests that this isoform could be less selective in binding different ligands like SPICE and the human Factor H. This is supported by experimental cofactor activity assays revealing that the human C3b is prone to bind both SPICE and Factor H, which exhibit diverse electrostatic properties. Additional investigations considering mutants of SPICE and VCP that revert their selectivity reveal an “electrostatic switch” into the central modules of the ligands, supporting the critical role of the electrostatics in the selectivity. Taken together, these evidences provide insights into the selectivity mechanism of the complement regulator proteins encoded by the variola and vaccinia viruses to circumvent the complement immunity and exert their pathogenic action. These fundamental aspects are valuable for the development of novel vaccines and therapeutic strategies.
more »
« less
- Award ID(s):
- 1905374
- PAR ID:
- 10289609
- Date Published:
- Journal Name:
- Frontiers in Molecular Biosciences
- Volume:
- 8
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Endocannabinoids are naturally occurring lipid-like molecules that bind to cannabinoid receptors (CB1and CB2) and regulate many of human bodily functions via the endocannabinoid system. There is a tremendous interest in developing selective drugs that target the CB receptors. However, the biophysical mechanisms responsible for the subtype selectivity for endocannbinoids have not been established. Recent experimental structures of CB receptors show that endocannbinoids potentially bind via membrane using the lipid access channel in the transmembrane region of the receptors. Furthermore, the N-terminus of the receptor could move in and out of the binding pocket thereby modulating both the pocket volume and its residue composition. On the basis of these observations, we propose two hypothesis to explain the selectivity of the endocannabinoid, anandamide for CB1receptor. First, the selectivity arises from distinct enthalpic ligand-protein interactions along the ligand binding pathway formed due to the movement of N-terminus and subsequent shifts in the binding pocket composition. Second, selectivity arises from the volumetric differences in the binding pocket allowing for differences in ligand conformational entropy. To quantitatively test these hypothesis, we perform extensive molecular dynamics simulations (∼0.9 milliseconds) along with Markov state modeling and deep learning-based VAMPnets to provide an interpretable characterization of the anandamide binding process to cannabinoid receptors and explain its selectivity for CB1. Our findings reveal that the distinct N-terminus positions along lipid access channels between TM1 and TM7 lead to different binding mechanisms and interactions between anandamide and the binding pocket residues. To validate the critical stabilizing interactions along the binding pathway, relative free energy calculations of anandamide analogs are used. Moreover, the larger CB2pocket volume increases the entropic effects of ligand binding by allowing higher ligand fluctuations but reduced stable interactions. Therefore, the opposing enthalpy and entropy effects between the receptors shape the endocannabinoid selectivity. Overall, the CB1selectivity of anandamide is explained by the dominant enthalpy contributions due to ligand-protein interactions in stable binding poses. This study shed lights on potential selectivity mechanisms for endocannabinoids that would aid in the discovery of CB selective drugsmore » « less
-
Monkeypox virus (MPXV), a member of the Orthopoxvirus genus, has begun to spread into many countries worldwide. While the prevalence of monkeypox in Central and Western Africa is well-known, the recent rise in the number of cases spread through intimate personal contact, particularly in the United States, poses a grave international threat. Previous studies have shown that cell-surface heparan sulfate (HS) is important for vaccinia virus (VACV) infection, particularly the binding of VACV A27, which appears to mediate the binding of virus to cellular HS. Some other glycosaminoglycans (GAGs) also bind to proteins on Orthopoxviruses. In this study, by using surface plasmon resonance, we demonstrated that MPXV A29 protein (a homolog of VACV A27) binds to GAGs including heparin and chondroitin sulfate/dermatan sulfate. The negative charges on GAGs are important for GAG–MPXV A29 interaction. GAG analogs, pentosan polysulfate and mucopolysaccharide polysulfate, show strong inhibition of MPXV A29–heparin interaction. A detailed understanding on the molecular interactions involved in this disease should accelerate the development of therapeutics and drugs for the treatment of MPXV.more » « less
-
Abstract SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein‐protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate‐1 and −2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C‐terminal to the pY. This specificity for chemically disparate species suggests that SH2B1 relies on distinct thermodynamic or structural mechanisms to bind to peptides. Using binding and structural strategies, we have identified unique thermodynamic signatures for each peptide binding mode, and several SH2B1 residues, including K575 and R578, that play distinct roles in peptide binding. The high‐resolution structure of the SH2 domain of SH2B1 further reveals conformationally plastic protein loops that may contribute to the ability of the protein to recognize dissimilar ligands. Together, numerous hydrophobic and electrostatic interactions, in addition to backbone conformational flexibility, permit the recognition of diverse peptides by SH2B1. An understanding of this expanded peptide recognition will allow for the identification of novel physiologically relevant SH2B1/peptide interactions, which can contribute to the design of obesity and diabetes pharmaceuticals to target the ligand‐binding interface of SH2B1 with high specificity.more » « less
-
null (Ed.)Abstract Borrelia miyamotoi , a relapsing fever spirochete transmitted by Ixodid ticks causes B. miyamotoi disease (BMD). To evade the human host´s immune response, relapsing fever borreliae, including B. miyamotoi , produce distinct variable major proteins. Here, we investigated Vsp1, Vlp15/16, and Vlp18 all of which are currently being evaluated as antigens for the serodiagnosis of BMD. Comparative analyses identified Vlp15/16 but not Vsp1 and Vlp18 as a plasminogen-interacting protein of B. miyamotoi . Furthermore, Vlp15/16 bound plasminogen in a dose-dependent fashion with high affinity. Binding of plasminogen to Vlp15/16 was significantly inhibited by the lysine analog tranexamic acid suggesting that the protein–protein interaction is mediated by lysine residues. By contrast, ionic strength did not have an effect on binding of plasminogen to Vlp15/16. Of relevance, plasminogen bound to the borrelial protein cleaved the chromogenic substrate S-2251 upon conversion by urokinase-type plasminogen activator (uPa), demonstrating it retained its physiological activity. Interestingly, further analyses revealed a complement inhibitory activity of Vlp15/16 and Vlp18 on the alternative pathway by a Factor H-independent mechanism. More importantly, both borrelial proteins protect serum sensitive Borrelia garinii cells from complement-mediated lysis suggesting multiple roles of these two variable major proteins in immune evasion of B. miyamotoi .more » « less
An official website of the United States government

