skip to main content

Title: The Relative Importance of Updraft and Cold Pool Characteristics in Supercell Tornadogenesis Using Highly Idealized Simulations
Abstract In the recent literature, the conception has emerged that supercell tornado potential may mostly depend on the strength of the low-level updraft, with more than sufficient subtornadic vertical vorticity being assumed to be present in the outflow. In this study, we use highly idealized simulations with heat sinks and sources to conduct controlled experiments, changing the cold pool or low-level updraft character independently. Multiple, time-dependent heat sinks are employed to produce a realistic near-ground cold pool structure. It is shown that both the cold pool and updraft strength actively contribute to the tornado potential. Furthermore, there is a sharp transition between tornadic and nontornadic cases, indicating a bifurcation between these two regimes triggered by small changes in the heat source or sink magnitude. Moreover, larger updraft strength, updraft width, and cold pool deficit do not necessarily result in a stronger maximum near-ground vertical vorticity. However, a stronger updraft or cold pool can both drastically reduce the time it takes for the first vortex to form.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
4089 to 4107
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity ( ω s ) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ω s , a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s –1 , vertical vorticity by up to 0.2 s –1 , and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ω s exceeded 110 m 2 s –2 and 0.015 s –1 , respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ω s correspond to greater tornado probabilities. 
    more » « less
  2. Abstract

    This study aims to objectively identify storm-scale characteristics associated with tornado-like vortex (TLV) formation in an ensemble of high-resolution supercell simulations. An ensemble of 51 supercells is created using Cloud Model version 1 (CM1). The first member is initialized using a base state populated by the Rapid Update Cycle (RUC) proximity sounding near El Reno, Oklahoma, on 24 May 2011. The other 50 ensemble members are created by randomly perturbing the base state after a supercell has formed. There is considerable spread between ensemble members, with some supercells producing strong, long-lived TLVs, while others do not produce a TLV at all. The ensemble is analyzed using the ensemble sensitivity analysis (ESA) technique, uncovering storm-scale characteristics that are dynamically relevant to TLV formation. In the rear flank, divergence at the surface southeast of the TLV helps converge and contract existing vertical vorticity, but there is no meaningful sensitivity to rear-flank outflow temperature. In the forward flank, warm temperatures within the cold pool are important to TLV production and magnitude. The longitudinal positioning of strong streamwise vorticity is also a clear indicator of TLV formation and strength, especially within 5 min of when the TLV is measured.

    Significance Statement

    Tornadoes that form in supercell thunderstorms (long-lived storms with a rotating updraft) are heavily influenced by the features created by the storm itself, such as the temperature of a downdraft. In this study, many different iterations of a strong supercell thunderstorm are simulated, in which tornado-like features are formed at different times with widely different strengths. A statistical method is used to identify what the storms had in common when they produced a tornado-like feature, and what they had in common when one failed to form. This study is important because it highlights which storm features are most influential to tornado formation using an objective method, with results that can be used when observing supercells in the field.

    more » « less
  3. This paper reports on results of idealized numerical simulations testing the influence of low-level humidity, and thus lifting condensation level (LCL), on the morphology and evolution of low-level rotation in supercell thunderstorms. Previous studies have shown that the LCL can influence outflow buoyancy, which can in turn affect generation and stretching of near-surface vertical vorticity. A less explored hypothesis is tested: that the LCL affects the relative positioning of near-surface circulation and the overlying mesocyclone, thus influencing the dynamic lifting and intensification of near-surface vertical vorticity. To test this hypothesis, a set of three base-state thermodynamic profiles with varying LCLs are implemented and compared over a variety of low-level wind profiles. The thermodynamic properties of the simulations are sensitive to variations in the LCL, with higher LCLs contributing to more negatively buoyant cold pools. These outflow characteristics allow for a more forward propagation of near-surface circulation relative to the midlevel mesocyclone. When the mid- and low-level mesocyclones become aligned with appreciable near-surface circulation, favorable dynamic updraft forcing is able to stretch and intensify this rotation. The strength of the vertical vorticity generated ultimately depends on other interrelated factors, including the amount of near-surface circulation generated within the cold pool and the buoyancy of storm outflow. However, these simulations suggest that mesocyclone alignment with near-surface circulation is modulated by the ambient LCL, and is a necessary condition for the strengthening of near-surface vertical vorticity. This alignment is also sensitive to the low-level wind profile, meaning that the LCL most favorable for the formation of intense vorticity may change based on ambient low-level shear properties.

    more » « less
  4. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

    more » « less
  5. null (Ed.)
    Abstract The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties. 
    more » « less