skip to main content


Title: Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM)
Deficient myelination of the brain is associated with neurodevelopmental delays, particularly in high-risk infants, such as those born small in relation to their gestational age (SGA). New methods are needed to further study this condition. Here, we employ Color Spatial Light Interference Microscopy (cSLIM), which uses a brightfield objective and RGB camera to generate pathlength-maps with nanoscale sensitivity in conjunction with a regular brightfield image. Using tissue sections stained with Luxol Fast Blue, the myelin structures were segmented from a brightfield image. Using a binary mask, those portions were quantitatively analyzed in the corresponding phase maps. We first used the CLARITY method to remove tissue lipids and validate the sensitivity of cSLIM to lipid content. We then applied cSLIM to brain histology slices. These specimens are from a previous MRI study, which demonstrated that appropriate for gestational age (AGA) piglets have increased internal capsule myelination (ICM) compared to small for gestational age (SGA) piglets and that a hydrolyzed fat diet improved ICM in both. The identity of samples was blinded until after statistical analyses.  more » « less
Award ID(s):
1735252
NSF-PAR ID:
10289840
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Garini, Yuval
Date Published:
Journal Name:
PLOS ONE
Volume:
15
Issue:
11
ISSN:
1932-6203
Page Range / eLocation ID:
e0241084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Introduction: Alzheimer’s disease (AD) causes progressive irreversible cognitive decline and is the leading cause of dementia. Therefore, a timely diagnosis is imperative to maximize neurological preservation. However, current treatments are either too costly or limited in availability. In this project, we explored using retinal vasculature as a potential biomarker for early AD diagnosis. This project focuses on stage 3 of a three-stage modular machine learning pipeline which consisted of image quality selection, vessel map generation, and classification [1]. The previous model only used support vector machine (SVM) to classify AD labels which limited its accuracy to 82%. In this project, random forest and gradient boosting were added and, along with SVM, combined into an ensemble classifier, raising the classification accuracy to 89%. Materials and Methods: Subjects classified as AD were those who were diagnosed with dementia in “Dementia Outcome: Alzheimer’s disease” from the UK Biobank Electronic Health Records. Five control groups were chosen with a 5:1 ratio of control to AD patients where the control patients had the same age, gender, and eye side image as the AD patient. In total, 122 vessel images from each group (AD and control) were used. The vessel maps were then segmented from fundus images through U-net. A t-test feature selection was first done on the training folds and the selected features was fed into the classifiers with a p-value threshold of 0.01. Next, 20 repetitions of 5-fold cross validation were performed where the hyperparameters were solely tuned on the training data. An ensemble classifier consisting of SVM, gradient boosting tree, and random forests was built and the final prediction was made through majority voting and evaluated on the test set. Results and Discussion: Through ensemble classification, accuracy increased by 4-12% relative to the individual classifiers, precision by 9-15%, sensitivity by 2-9%, specificity by at least 9-16%, and F1 score by 712%. Conclusions: Overall, a relatively high classification accuracy was achieved using machine learning ensemble classification with SVM, random forest, and gradient boosting. Although the results are very promising, a limitation of this study is that the requirement of needing images of sufficient quality decreased the amount of control parameters that can be implemented. However, through retinal vasculature analysis, this project shows machine learning’s high potential to be an efficient, more cost-effective alternative to diagnosing Alzheimer’s disease. Clinical Application: Using machine learning for AD diagnosis through retinal images will make screening available for a broader population by being more accessible and cost-efficient. Mobile device based screening can also be enabled at primary screening in resource-deprived regions. It can provide a pathway for future understanding of the association between biomarkers in the eye and brain. 
    more » « less
  2. Background

    A lack of in utero imaging data hampers our understanding of the connections in the human fetal brain. Generalizing observations from postmortem subjects and premature newborns is inaccurate due to technical and biological differences.

    Purpose

    To evaluate changes in fetal brain structural connectivity between 23 and 35 weeks postconceptional age using a spatiotemporal atlas of diffusion tensor imaging (DTI).

    Study Type

    Retrospective.

    Population

    Publicly available diffusion atlases, based on 60 healthy women (age 18–45 years) with normal prenatal care, from 23 and 35 weeks of gestation.

    Field Strength/Sequence

    3.0 Tesla/DTI acquired with diffusion‐weighted echo planar imaging (EPI).

    Assessment

    We performed whole‐brain fiber tractography from DTI images. The cortical plate of each diffusion atlas was segmented and parcellated into 78 regions derived from the Edinburgh Neonatal Atlas (ENA33). Connectivity matrices were computed, representing normalized fiber connections between nodes. We examined the relationship between global efficiency (GE), local efficiency (LE), small‐worldness (SW), nodal efficiency (NE), and betweenness centrality (BC) with gestational age (GA) and with laterality.

    Statistical Tests

    Linear regression was used to analyze changes in GE, LE, NE, and BC throughout gestation, and to assess changes in laterality. Thet‐tests were used to assess SW.P‐values were corrected using Holm‐Bonferroni method. A correctedP‐value <0.05 was considered statistically significant.

    Results

    Network analysis revealed a significant weekly increase in GE (5.83%/week, 95% CI 4.32–7.37), LE (5.43%/week, 95% CI 3.63–7.25), and presence of SW across GA. No significant hemisphere differences were found in GE (P = 0.971) or LE (P = 0.458). Increasing GA was significantly associated with increasing NE in 41 nodes, increasing BC in 3 nodes, and decreasing BC in 2 nodes.

    Data Conclusion

    Extensive network development and refinement occur in the second and third trimesters, marked by a rapid increase in global integration and local segregation.

    Level of Evidence

    3

    Technical Efficacy

    Stage 2

     
    more » « less
  3. Purpose: To determine if saliency maps in radiology artificial intelligence (AI) are vulnerable to subtle perturbations of the input, which could potentially lead to misleading interpretations, using Prediction-Saliency Correlation (PSC) for evaluating the sensitivity and robustness of saliency methods. Materials and Methods: In this retrospective study, locally trained deep learning models and a research prototype provided by a commercial vender were systematically evaluated on 191,229 chest radiographs from the CheXpert dataset(1,2) and 7,022 MRI images of human brain tumor classification dataset(3). Two radiologists performed a reader study on 270 chest radiographs pairs. A model-agnostic approach for computing the PSC coefficient was used to evaluate the sensitivity and robustness of seven commonly used saliency methods. Results: Leveraging locally trained model parameters, we revealed the saliency methods’ low sensitivity (maximum PSC = 0.25, 95% CI: 0.12, 0.38) and weak robustness (maximum PSC = 0.12, 95% CI: 0.0, 0.25) on the CheXpert dataset. Without model specifics, we also showed that the saliency maps from a commercial prototype could be irrelevant to the model output (area under the receiver operating characteristic curve dropped by 8.6% without affecting the saliency map). The human observer studies confirmed that is difficult for experts to identify the perturbed images, who had less than 44.8% correctness. Conclusion: Popular saliency methods scored low PSC values on the two datasets of perturbed chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric provides a valuable quantification tool for validating the trustworthiness of medical AI explainability. Abbreviations: AI = artificial intelligence, PSC = prediction-saliency correlation, AUC = area under the receiver operating characteristic curve, SSIM = structural similarity index measure. Summary: Systematic evaluation of saliency methods through subtle perturbations in chest radiographs and brain MRI images demonstrated low sensitivity and robustness of those methods, warranting caution when using saliency methods that may misrepresent changes in AI model prediction. 
    more » « less
  4. Abstract  
    more » « less
  5. null (Ed.)
    Mitochondria are dynamic organelles that undergo fission and fusion. While they are essential for cellular metabolism, the effect of dysregulated mitochondrial dynamics on cellular metabolism is not fully understood. We previously found that transmembrane protein 135 ( Tmem135) plays a role in the regulation of mitochondrial dynamics in mice. Mice homozygous for a Tmem135 mutation ( Tmem135 FUN025/FUN025 ) display accelerated aging and age-related disease pathologies in the retina including the retinal pigment epithelium (RPE). We also generated a transgenic mouse line globally overexpressing the Tmem135 gene ( Tmem135 TG). In several tissues and cells that we studied such as the retina, heart, and fibroblast cells, we observed that the Tmem135 mutation causes elongated mitochondria, while overexpression of Tmem135 results in fragmented mitochondria. To investigate how abnormal mitochondrial dynamics affect metabolic signatures of tissues and cells, we identified metabolic changes in primary RPE cell cultures as well as heart, cerebellum, and hippocampus isolated from Tmem135 FUN025/FUN025 mice (fusion > fission) and Tmem135 TG mice (fusion < fission) using nuclear magnetic resonance spectroscopy. Metabolomics analysis revealed a tissue-dependent response to Tmem135 alterations, whereby significant metabolic changes were observed in the heart of both Tmem135 mutant and TG mice as compared to wild-type, while negligible effects were observed in the cerebellum and hippocampus. We also observed changes in Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells associated with osmosis and glucose and phospholipid metabolism. We observed depletion of NAD + in both Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells, indicating that imbalance in mitochondrial dynamics to both directions lowers the cellular NAD + level. Metabolic changes identified in this study might be associated with imbalanced mitochondrial dynamics in heart tissue and RPE cells which can likely lead to functional abnormalities. Impact statement Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells. 
    more » « less