Abstract Adverse birth outcomes, such as early gestational age and low birth weight, can have lasting effects on morbidity and mortality, with impacts that persist into adulthood. Identifying the maternal factors that contribute to adverse birth outcomes in the next generation is thus a priority. Epigenetic clocks, which have emerged as powerful tools for quantifying biological aging and various dimensions of physiological dysregulation, hold promise for clarifying relationships between maternal biology and infant health, including the maternal factors or states that predict birth outcomes. Nevertheless, studies exploring the relationship between maternal epigenetic age and birth outcomes remain few. Here, we attempt to replicate a series of analyses previously reported in a US-based sample, using a larger similarly aged sample (n = 296) of participants of a long-running study in the Philippines. New pregnancies were identified prospectively, dried blood spot samples were collected during the third trimester, and information was obtained on gestational age at delivery and offspring weight after birth. Genome-wide DNA methylation was assessed with the Infinium EPIC array. Using a suite of 15 epigenetic clocks, we only found one significant relationship: advanced age on the epigenetic clock trained on leptin predicted a significantly earlier gestational age at delivery (β = − 0.15,p = 0.009). Of the other 29 relationships tested predicting gestational age and offspring birth weight, none were statistically significant. In this sample of Filipino women, epigenetic clocks capturing multiple dimensions of biology and health do not predict birth outcomes in offspring.
more »
« less
Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM)
Deficient myelination of the brain is associated with neurodevelopmental delays, particularly in high-risk infants, such as those born small in relation to their gestational age (SGA). New methods are needed to further study this condition. Here, we employ Color Spatial Light Interference Microscopy (cSLIM), which uses a brightfield objective and RGB camera to generate pathlength-maps with nanoscale sensitivity in conjunction with a regular brightfield image. Using tissue sections stained with Luxol Fast Blue, the myelin structures were segmented from a brightfield image. Using a binary mask, those portions were quantitatively analyzed in the corresponding phase maps. We first used the CLARITY method to remove tissue lipids and validate the sensitivity of cSLIM to lipid content. We then applied cSLIM to brain histology slices. These specimens are from a previous MRI study, which demonstrated that appropriate for gestational age (AGA) piglets have increased internal capsule myelination (ICM) compared to small for gestational age (SGA) piglets and that a hydrolyzed fat diet improved ICM in both. The identity of samples was blinded until after statistical analyses.
more »
« less
- Award ID(s):
- 1735252
- PAR ID:
- 10289840
- Editor(s):
- Garini, Yuval
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0241084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the largest and most expansive lifespan magnetoencephalography (MEG) study to date (n = 434, 6 to 84 y), we provide critical data on the normative trajectory of resting-state spontaneous activity and its temporal dynamics. We perform cutting-edge analyses to examine age and sex effects on whole-brain, spatially-resolved relative and absolute power maps, and find significant age effects in all spectral bands in both types of maps. Specifically, lower frequencies showed a negative correlation with age, while higher frequencies positively correlated with age. These correlations were further probed with hierarchical regressions, which revealed significant nonlinear trajectories in key brain regions. Sex effects were found in absolute but not relative power maps, highlighting key differences between outcome indices that are generally used interchangeably. Our rigorous and innovative approach provides multispectral maps indicating the unique trajectory of spontaneous neural activity across the lifespan, and illuminates key methodological considerations with the widely used relative/absolute power maps of spontaneous cortical dynamics.more » « less
-
Abstract Human newborns are considered altricial compared with other primates because they are relatively underdeveloped at birth. However, in a broader comparative context, other mammals are more altricial than humans. It has been proposed that altricial development evolved secondarily in humans due to obstetrical or metabolic constraints, and in association with increased brain plasticity. To explore this association, we used comparative data from 140 placental mammals to measure how altriciality evolved in humans and other species. We also estimated how changes in brain size and gestation length influenced the timing of neurodevelopment during hominin evolution. Based on our data, humans show the highest evolutionary rate to become more altricial (measured as the proportion of adult brain size at birth) across all placental mammals, but this results primarily from the pronounced postnatal enlargement of brain size rather than neonatal changes. In addition, we show that only a small number of neurodevelopmental events were shifted to the postnatal period during hominin evolution, and that they were primarily related to the myelination of certain brain pathways. These results indicate that the perception of human altriciality is mostly driven by postnatal changes, and they point to a possible association between the timing of myelination and human neuroplasticity.more » « less
-
IntroductionFood cravings are common in pregnancy and along with emotional eating and eating in the absence of hunger, they are associated with excessive weight gain and adverse effects on metabolic health including gestational diabetes mellitus (GDM). Women with GDM also show poorer mental health, which further can contribute to dysregulated eating behaviour. Food cravings can lead to greater activity in brain centres known to be involved in food ‘wanting’ and reward valuation as well as emotional eating. They are also related to gestational weight gain. Thus, there is a great need to link implicit brain responses to food with explicit measures of food intake behaviour, especially in the perinatal period. The aim of this study is to investigate the spatiotemporal brain dynamics to visual presentations of food in women during pregnancy and in the post partum, and link these brain responses to the eating behaviour and metabolic health outcomes in women with and without GDM. Methods and analysisThis prospective observational study will include 20 women with and 20 without GDM, that have valid data for the primary outcomes. Data will be assessed at 24–36 weeks gestational age and at 6 months post partum. The primary outcomes are brain responses to food pictures of varying carbohydrate and fat content during pregnancy and in the post partum using electroencephalography. Secondary outcomes including depressive symptoms, current mood and eating behaviours will be assessed with questionnaires, objective eating behaviours will be measured using Auracle and stress will be measured with heart rate and heart rate variability (Actiheart). Other secondary outcome measures include body composition and glycaemic control parameters. Ethics and disseminationThe Human Research Ethics Committee of the Canton de Vaud approved the study protocol (2021-01976). Study results will be presented at public and scientific conferences and in peer-reviewed journals.more » « less
-
Abstract Aging-related periventricular white matter hyperintensities (pvWMHs) are a common observation in medical images of the aging brain. The underlying tissue damage is part of the complex pathophysiology associated with age-related microstructural changes and cognitive decline. PvWMH formation is linked to blood–brain barrier dysfunction from cerebral small vessel disease as well as the accumulation of cerebrospinal fluid in periventricular tissue due to progressive denudation of the ventricular wall. In need of a unifying theory for pvWMH etiology, image-based finite-element modeling is used to demonstrate that ventricular expansion from age-related cerebral atrophy and hemodynamic loading leads to maximum mechanical loading of the ventricular wall in the same locations that show pvWMHs. Ventricular inflation, induced via pressurization of the ventricular wall, creates significant ventricular wall stretch and stress on the ependymal cells lining the wall, that are linked to cerebrospinal fluid leaking from the lateral ventricles into periventricular white matter tissue. Eight anatomically accurate 3D brain models of cognitively healthy subjects with a wide range of ventricular shapes are created. For all models, our simulations show that mechanomarkers of mechanical wall loading are consistently highest in pvWMHs locations ( p < 0.05). Maximum principal strain, the ependymal cell thinning ratio, and wall curvature are on average 14%, 8%, and 24% higher in pvWMH regions compared to the remaining ventricular wall, respectively. Computational modeling provides a powerful framework to systematically study pvWMH formation and growth with the goal to develop pharmacological interventions in the future.more » « less
An official website of the United States government

