Previous research has shown that motion sickness associated with virtual vehicles is more common among passengers than among drivers. Separately, other studies have shown that postural precursors of motion sickness during virtual driving differ as a function of prior experience driving physical vehicles. We investigated the intersection of those prior effects: We asked whether decades of physical driving experience 1) would influence motion sickness among passengers in a virtual vehicle, and 2) would influence postural precursors of motion sickness among passengers in a virtual vehicle. In our study, middle-aged adults were exposed to a virtual vehicle as passengers. Some participants (Physical Drivers) had decades of experience driving physical automobiles, while others (Physical Non-Drivers) had rarely or never driven a physical vehicle. First, we measured head and torso movement as standing participants performed simple visual tasks. Then, each participant watched a recording of the motion of a virtual vehicle, which induced motion sickness in some participants. Afterward, neither the incidence nor the severity of motion sickness differed between Physical Drivers and Physical Non-Drivers. Our analysis of pre-exposure standing body sway revealed postural precursors of motion sickness in measures of the spatial magnitude and temporal dynamics of movement. In statistically significant interactions, these precursors (Well vs. Sick) differed as a function of physical driving experience (Physical Drivers vs. Physical Non-Drivers). Overall, our results indicate that, among virtual passengers, long-term real-world driving experience influenced the postural precursors of motion sickness, but not the incidence or severity of motion sickness. We discuss these results in terms of relationships between perception and motor control in theories of motion sickness etiology.
- Award ID(s):
- 1901423
- PAR ID:
- 10289850
- Date Published:
- Journal Name:
- Frontiers in Virtual Reality
- Volume:
- 1
- ISSN:
- 2673-4192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The number of people who own a virtual reality (VR) head-mounted display (HMD) has reached a point where researchers can readily recruit HMD owners to participate remotely using their own equipment. However, HMD owners recruited online may differ from the university community members who typically participate in VR research. HMD owners (n=220) and non-owners (n=282) were recruited through two online work sites-Amazon's Mechanical Turk and Prolific-and an undergraduate participant pool. Participants completed a survey in which they provided demographic information and completed measures of HMD use, video game use, spatial ability, and motion sickness susceptibility. In the context of the populations sampled, the results provide 1) a characterization of HMD owners, 2) a snapshot of the most commonly owned HMDs, 3) a comparison between HMD owners and non-owners, and 4) a comparison among online workers and undergraduates. Significant gender differences were found: men reported lower motion sickness susceptibility and more video game hours than women, and men outperformed women on spatial tasks. Men comprised a greater proportion of HMD owners than non-owners, but after accounting for this imbalance, HMD owners did not differ appreciably from non-owners. Comparing across recruitment platform, male undergraduates outperformed male online workers on spatial tests, and female undergraduates played fewer video game hours than female online workers. The data removal rate was higher from Amazon compared to Prolific, possibly reflecting greater dishonesty. These results provide a description of HMD users that can inform researchers recruiting remote participants through online work sites. These results also signal a need for caution when comparing in-person VR research that primarily enrolls undergraduates to online VR research that enrolls online workers.more » « less
-
Objective To examine the hypothesis that constant speed is more comfortable than variable speed profiles and may minimize cybersickness.
Background Current best practices for virtual reality (VR) content creation suggest keeping any form of acceleration as short and infrequent as possible to mitigate cybersickness.
Methods In Experiment 1, participants experienced repetitions of simulated linear motion, and in Experiment 2, they experienced repetitions of a circular motion. Three speed profiles were tested in each experiment. Each trial lasted 2 min while standing. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and operationally defined in terms of total severity scores. Postural stability was measured using a Wii Balance Board and operationally defined in terms of center of pressure (COP) path length. Postural measures were decomposed into anterior-posterior and medial-lateral axes and subjected to detrended fluctuation analysis.
Results For both experiments, no significant differences were observed between the three speed profiles in terms of cybersickness or postural stability, and none of the baseline postural measures could predict SSQ scores for the speed profile conditions. An axis effect was observed in both experiments such that normalized COP movement was significantly greater along the anterior-posterior axis than the medial-lateral axis.
Conclusion Results showed no convincing evidence to support the common belief that constant speed is more comfortable than variable speed profiles for scenarios typical of VR applications.
Application The present findings offer guidelines for the design of locomotion techniques involving traversal in VR environments.
-
Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to a significant increase. We discuss the results and potential explanations of our findings.more » « less
-
null (Ed.)Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex.more » « less