During large scale outbreaks of infectious diseases, it is imperative that media report about the potential risks. Because media reporting plays a vital role in disseminating crucial information about diseases and its associated risk, understanding how media reports could influence individuals’ behavior and its potential impact on disease transmission dynamics is important. A mathematical model within an optimal control framework of a generic disease, accounting for treatment and media reporting of disease-induced deaths is formulated. Due to the complexity of choosing the best media function, our goal is to attempt to address the following research question: what is the effect of the media-induced functional response on mitigating the spread of the disease? Connecting the functional forms to the control problem is an approach that is not very developed in the literature. Thus, this study analyses the effect of different incidence functions on disease transmission, and the qualitative nature of epidemic dynamics by carrying out optimal control analysis using three different contact rates and a media function that is dependent on the number of deaths. Theoretical analyses show that the functional forms of the effective contact rate have no effect on initial disease transmission. Time-dependent controls for treatment and vaccination with a constant effective contact rate are incorporated to determine optimal control strategies. Numerical simulations show the short-term impact of media coverage on mitigating the spread of the disease, and it is observed that with three incidence functions used, the qualitative nature of the controls remains the same. The effective contact rates are graphically shown to have a population-level effect on the disease dynamics as the number of treated and recovered individuals could be significantly different. Finally, it is shown that treatment of infectives should be at its maximum rate for a longer period compared to vaccination, while concurrent implementation of vaccination and treatment is more impactful in mitigating the spread of the disease. Thus, it is imperative that media reports and health policy decision making on infectious diseases are contextualized.
more »
« less
A semiparametric Bayesian approach to epidemics, with application to the spread of the coronavirus MERS in South Korea in 2015
We consider incomplete observations of stochastic processes governing the spread of infectious diseases through finite populations by way of contact. We propose a flexible semiparametric modeling framework with at least three advantages. First, it enables researchers to study the structure of a population contact network and its impact on the spread of infectious diseases. Second, it can accommodate short- and long-tailed degree distributions and detect potential superspreaders, who represent an important public health concern. Third, it addresses the important issue of incomplete data. Starting from first principles, we show when the incomplete-data generating process is ignorable for the purpose of Bayesian inference for the parameters of the population model. We demonstrate the semiparametric modeling framework by simulations and an application to the partially observed MERS epidemic in South Korea in 2015. We conclude with an extended discussion of open questions and directions for future research.
more »
« less
- PAR ID:
- 10289888
- Date Published:
- Journal Name:
- Journal of nonparametric statistics
- ISSN:
- 1048-5252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents an integrated computational modelling framework combining pedestrian dynamics and infection spread models, to analyse the infectious disease spread during the different stages of air-travel. While, commercial air travel is central to the global mobility of goods and people, it has also been identified as a leading factor in the spread of several epidemic diseases including influenza, SARS and Ebola. The mixing of susceptible and infectious individuals in these high people density locations like airports involves pedestrian movement which needs to be taken into account in the modeling studies of disease dynamics. We develop a Molecular Dynamics based social force modeling approach for pedestrian dynamics and combine it with a stochastic infection dynamics model to evaluate the spread of viral infectious diseases in airplanes and airports. We apply the multiscale model for various key components of air travel and suggest strategies to reduce the number of contacts and the spread of infectious diseases. We simulate pedestrian movement during boarding and deplaning of some typical commercial airplane models and movement of people through security check areas. We found specific boarding strategies that reduce the number of contacts. Further, we find that smaller airplanes are more effective in reducing the number of contacts compared to larger airplanes. We propose certain queue configuration that reduces contacts between people and mitigate disease spread.more » « less
-
Infectious disease spread within the human population can be conceptualized as a complex system composed of individuals who interact and transmit viruses through spatio-temporal processes that manifest across and between scales. The complexity of this system ultimately means that the spread of infectious diseases is difficult to understand, predict, and respond to effectively. Research interest in GeoAI for public health has been fueled by the increased availability of rich data sources such as human mobility data, OpenStreetMap data, contact tracing data, symptomatic online surveys, retail and commerce data, genomics data, and more. This data availability has resulted in a wide variety of data-driven solutions for infectious disease spread prediction which show potential in enhancing our forecasting capabilities. This book chapter (1) motivates the need for AI-based solutions in public health by showing the heterogeneity of human behavior related to health, (2) provides a brief survey of current state-of-the-art solutions using AI for infectious disease spread prediction, (3) describes a use-case of using large-scale human mobility data to inform AI models for the prediction of infectious disease spread in a city, and (4) provides future research directions and ideas.more » « less
-
Abstract BackgroundVector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. MethodsTo better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. ResultsModels based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. ConclusionsHotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection.more » « less
-
The increased availability of datasets during the COVID-19 pandemic enabled machine-learning approaches for modeling and forecasting infectious diseases. However, such approaches are known to amplify the bias in the data they are trained on. Bias in such input data like clinical case data for COVID-19 is difficult to measure due to disparities in testing availability, reporting standards, and healthcare access among different populations and regions. Furthermore, the way such biases may propagate through the modeling pipeline to decision-making is relatively unknown. Therefore, we present a system that leverages a highly detailed agent-based model (ABM) of infectious disease spread in a city to simulate the collection of biased clinical case data where the bias is known. Our system allows users to load either a pre-selected region or select their own (using OpenStreetMap data for the environment and census data for the population), specify population and infectious disease parameters, and the degree(s) to which different populations will be overrepresented or underrepresented in the case data. In addition to the system, we provide a large number of benchmark datasets that produce case data at different levels of bias for different regions. Wehope that infectious disease modelers will use these datasets to investigate how well their models are robust to data bias or whether their model is overfit to biased data.more » « less
An official website of the United States government

