skip to main content


Title: Pedigree‐based assessment of recent population connectivity in a threatened rattlesnake
Abstract

Managing endangered species in fragmented landscapes requires estimating dispersal rates between populations over contemporary timescales. Here, we developed a new method for quantifying recent dispersal using genetic pedigree data for close and distant kin. Specifically, we describe an approach that infers missing shared ancestors between pairs of kin in habitat patches across a fragmented landscape. We then applied a stepping‐stone model to assign unsampled individuals in the pedigree to probable locations based on minimizing the number of movements required to produce the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed parent‐offspring sets to estimate dispersal rates between habitat patches under a Bayesian model. Our approach measures connectivity over the timescale represented by the small number of generations contained within the pedigree and so is appropriate for estimating the impacts of recent habitat changes due to human activity. We used our method to estimate recent movement between newly discovered populations of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data from 2996 RAD‐based genetic loci. Our pedigree analyses found no evidence for contemporary connectivity between five genetic groups, but, as validation of our approach, showed high dispersal rates between sample sites within a single genetic cluster. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes have small numbers of resident snakes and are demographically isolated conservation units. More broadly, our methodology can be widely applied to determine contemporary connectivity rates, independent of bias from shared genetic similarity due to ancestry that impacts other approaches.

 
more » « less
Award ID(s):
1638872
NSF-PAR ID:
10449338
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
Volume:
21
Issue:
6
ISSN:
1755-098X
Page Range / eLocation ID:
p. 1820-1832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Assessing the environmental factors that influence the ability of a threatened species to move through a landscape can be used to identify conservation actions that connect isolated populations. However, direct observations of species' movement are often limited, making the development of alternate approaches necessary. Here we use landscape genetic analyses to assess the impact of landscape features on the movement of individuals between local populations of a threatened snake, the eastern massasauga rattlesnake (Sistrurus catenatus). We linked connectivity data with habitat information from two landscapes of similar size: a large region of unfragmented habitat and a previously studied fragmented landscape consisting of isolated patches of habitat. We used this analysis to identify features of the landscape where modification or acquisition would enhance population connectivity in the fragmented region. We found evidence that current connectivity was impacted by both contemporary land‐cover features, especially roads, and inherent landscape features such as elevation. Next, we derived estimates of expected movement ability using a recently developed pedigree‐based approach and least‐cost paths through the unfragmented landscape. We then used our pedigree and resistance map to estimate resistance polygons of the potential extent forS. catenatusmovement in the fragmented landscape. These polygons identify possible sites for future corridors connecting currently isolated populations in this landscape by linking the impact of future habitat modification or land acquisition to dispersal ability in this species. Overall, our study shows how modeling landscape resistance across differently fragmented landscapes can identify habitat features that affect contemporary movement in threatened species in fragmented landscapes and how this information can be used to guide mitigation actions whose goal is to connect isolated populations.

     
    more » « less
  2. Abstract

    Impacts of urban development on aquatic populations are often complex and difficult to ascertain, but population genetic analysis has allowed researchers to monitor and estimate gene flow in the context of existing and future hydroelectric projects. The Lower Mekong Basin is undergoing rapid hydroelectric development with around 50 completed and under‐construction dams and 95 planned dams. The authors investigated the baseline genetic diversity of two exploited migratory fishes, the mud carpHenicorhynchus lobatus(five locations), and the rat‐faced pangasiid catfish,Helicophagus leptorhynchus(two locations), in the Lower Mekong Basin using the genomic double digest restriction site‐associated DNA (ddRAD) sequencing method. In both species, fish sampled upstream of Khone Falls were differentiated from those collected at other sites, andNeestimates at the site above the falls were lower than those at other sites. This was the first study to utilize thousands of RAD‐generated single nucleotide polymorphisms to indicate that the Mekong's Khone Falls are a potential barrier to gene flow for these two moderately migratory species. The recent completion of the Don Sahong dam across one of the only channels for migratory fishes through Khone Falls may further exacerbate signatures of isolation and continue to disrupt the migration patterns of regionally vital food fishes. In addition,H. lobatuspopulations downstream of Khone Falls, including the 3S Basin and Tonle Sap system, displayed robust connectivity. Potential obstruction of migration pathways between these river systems resulting from future dam construction may limit dispersal, which has led to elevated inbreeding rates and even local extirpation in other fragmented riverine species.

     
    more » « less
  3. Abstract

    Urban development has major impacts on connectivity among wildlife populations and is thus likely an important factor shaping pathogen transmission in wildlife. However, most investigations of wildlife diseases in urban areas focus on prevalence and infection risk rather than potential effects of urbanization on transmission itself. Feline immunodeficiency virus (FIV) is a directly transmitted retrovirus that infects many felid species and can be used as a model for studying pathogen transmission at landscape scales. We investigated phylogenetic relationships among FIV isolates sampled from five bobcat (Lynx rufus) populations in coastal southern California that appear isolated due to major highways and dense urban development. Divergence dates among FIV phylogenetic lineages in several cases reflected historical urban growth and construction of major highways. We found strong FIV phylogeographic structure among three host populations north‐west of Los Angeles, largely coincident with host genetic structure. In contrast, relatively little FIV phylogeographic structure existed among two genetically distinct host populations south‐east of Los Angeles. Rates of FIV transfer among host populations did not vary significantly, with the lack of phylogenetic structure south‐east of Los Angeles unlikely to reflect frequent contemporary transmission among populations. Our results indicate that major barriers to host gene flow can also act as barriers to pathogen spread, suggesting potentially reduced susceptibility of fragmented populations to novel directly transmitted pathogens. Infrequent exchange of FIV among host populations suggests that populations would best be managed as distinct units in the event of a severe disease outbreak. Phylogeographic inference of pathogen transmission is useful for estimating the ability of geographic barriers to constrain disease spread and can provide insights into contemporary and historical drivers of host population connectivity.

     
    more » « less
  4. Abstract

    Maintaining the ability of organisms to move between suitable patches of habitat despite ongoing habitat loss is essential to conserving biodiversity. Quantifying connectivity has therefore become a central focus of conservation planning. A large number of metrics have been developed to estimate potential connectivity based on habitat configuration, matrix structure and information on organismal movement, and it is often assumed that metrics explain actual connectivity. Yet, validation of metrics is rare, particularly across entire landscapes undergoing habitat loss—a crucial problem that connectivity conservation aims to mitigate.

    We leveraged a landscape‐scale habitat loss and fragmentation experiment to assess the performance of commonly used patch‐ and landscape‐scale connectivity metrics against observed movement data, test whether incorporating information about the matrix improves connectivity metrics and examine the performance of metrics across a gradient of habitat loss. We tested whether 38 connectivity metrics predict movement at the patch (i.e. patch immigration rates) and landscape (i.e., total movements) scale for a pest insect, the cactus bugChelinidea vittiger, across 15 replicate landscapes.

    Metrics varied widely in their ability to explain actual connectivity. At the patch scale, dPCflux, which describes the contribution of a patch to movement across the landscape independent of patch size, best explained immigration rates. At the landscape scale, total movements were best explained by a mesoscale metric that captures that distance between clusters of patches (i.e. modules). Incorporating the matrix did not necessarily improve the ability of metrics to predict actual connectivity. Across the habitat loss gradient, dPCfluxwas sensitive to habitat amount.

    Synthesis and applications. Our study provides a much‐needed evaluation of network connectivity metrics at the patch and landscape scales, emphasizing that accurate quantification of connectivity requires the incorporation, not only of habitat amount but also habitat configuration and information on dispersal capability of species. We suggest that variation in habitat may often be more critical for interpreting network connectivity than the matrix, and advise that connectivity metrics may be sensitive to habitat loss and should therefore be applied with caution to highly fragmented landscapes. Finally, we recommend that applications integrate mesoscale configuration of habitat into connectivity strategies.

     
    more » « less
  5. Abstract

    Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.

     
    more » « less