skip to main content


Title: Negative-pressure enhanced ferroelectricity and piezoelectricity in lead-free BaTiO 3 ferroelectric nanocomposite films
Due to environmental concerns and the increasing drive towards miniaturization of electronic circuits and devices, lead-free ferroelectric films with low leakage current and robust ferroelectric and piezoelectric properties are highly desired. The preferred alternative, BaTiO 3 , is non-toxic and has ferroelectric properties, but its high leakage current, poor ferroelectricity and piezoelectricity and low Curie temperature of ∼130 °C in thin film form are obstacles for high-temperature practical applications. Here, we report that a negative-pressure-driven enhancement of ferroelectric Curie temperature and effective piezoelectric coefficient are achieved in (111)-oriented BaTiO 3 nanocomposite films. The enhanced ferroelectric and piezoelectric properties in the emergent monoclinic BaTiO 3 are attributed to the sharp vertical interface and 3D tensile strain that develops upon interspersing stiff and self-assembled vertical Sm 2 O 3 nanopillars through the film thickness. Our work also demonstrates that fabricating oxide films through (111)-oriented epitaxy opens up new avenues for the creation of new phase components and exploration of novel functionalities for developing oxide quantum electronic devices.  more » « less
Award ID(s):
1565822
NSF-PAR ID:
10289934
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
8
Issue:
24
ISSN:
2050-7526
Page Range / eLocation ID:
8091 to 8097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectric materials owning a polymorphic nanodomain structure usually exhibit colossal susceptibilities to external mechanical, electrical, and thermal stimuli, thus holding huge potential for relevant applications. Despite the success of traditional strategies by means of complex composition design, alternative simple methods such as strain engineering have been intensively sought to achieve a polymorphic nanodomain state in lead‐free, simple‐composition ferroelectric oxides in recent years. Here, a nanodomain configuration with morphed structural phases is realized in an epitaxial BaTiO3film grown on a (111)‐oriented SrTiO3substrate. Using a combination of experimental and theoretical approaches, it is revealed that a threefold rotational symmetry element enforced by the epitaxial constraint along the [111] direction of BaTiO3introduces considerable instability among intrinsic tetragonal, orthorhombic, and rhombohedral phases. Such phase degeneracy induces ultrafine ferroelectric nanodomains (1–10 nm) with low‐angle domain walls, which exhibit significantly enhanced dielectric and piezoelectric responses compared to the (001)‐oriented BaTiO3film with uniaxial ferroelectricity. Therefore, the finding highlights the important role of epitaxial symmetry in domain engineering of oxide ferroelectrics and facilitates the development of dielectric capacitors and piezoelectric devices.

     
    more » « less
  2. null (Ed.)
    (K0.5Na0.5)NbO3 (KNN) is a promising lead-free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non-stoichiometry. This paper compares three acetate-based chemical solution synthesis and deposition methods for 0.5 mol% Mn-doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8V10@8 Acm@2 up to electric fields as high as 600 kVcm@1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two-step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed. 
    more » « less
  3. Abstract

    BaTiO3is a technologically relevant material in the perovskite oxide class with above‐room‐temperature ferroelectricity and a very large electro‐optical coefficient, making it highly suitable for emerging electronic and photonic devices. An easy, robust, straightforward, and scalable growth method is required to synthesize epitaxial BaTiO3thin films with sufficient control over the film's stoichiometry to achieve reproducible thin film properties. Here the growth of BaTiO3thin films by hybrid molecular beam epitaxy is reported. A self‐regulated growth window is identified using complementary information obtained from reflection high energy electron diffraction, the intrinsic film lattice parameter, film surface morphology, and scanning transmission electron microscopy. Subsequent optical characterization of the BaTiO3films by spectroscopic ellipsometry revealed refractive index and extinction coefficient values closely resembling those of stoichiometric bulk BaTiO3crystals for films grown inside the growth window. Even in the absence of a lattice parameter change of BaTiO3thin films, degradation of optical properties is observed, accompanied by the appearance of a wide optical absorption peak in the IR spectrum, attributed to optical transitions involving defect states present. Therefore, the optical properties of BaTiO3can be utilized as a much finer and more straightforward probe to determine the stoichiometry level present in BaTiO3films.

     
    more » « less
  4. The effects of growth conditions on the chemistry, structure, electrical leakage, dielectric response, and ferroelectric behavior of Ba 1−x TiO y thin films are explored. Although single-phase, coherently-strained films are produced in all cases, small variations in the laser fluence during pulsed-laser deposition growth result in films with chemistries ranging from BaTiO 3 to Ba 0.93 TiO 2.87 . As the laser fluence increases, the films become more barium deficient and the out-of-plane lattice parameter expands (as much as 5.4% beyond the expected value for Ba 0.93 TiO 2.87 films). Stoichiometric BaTiO 3 films are found to be three orders of magnitude more conducting than Ba 0.93 TiO 2.87 films and the barium-deficient films exhibit smaller low-field permittivity, lower loss tangents, and higher dielectric maximum temperatures. Although large polarization is observed in all cases, large built-in potentials (shifted loops) and hysteresis-loop pinching are present in barium-deficient films – suggesting the presence of defect dipoles. The effects of these defect dipoles on ferroelectric hysteresis are studied using first-order reversal curves. Temperature-dependent current–voltage and deep-level transient spectroscopy studies reveal at least two defect states, which grow in concentration with increasing deficiency of both barium and oxygen, at ∼0.4 eV and ∼1.2 eV above the valence band edge, which are attributed to defect–dipole complexes and defect states, respectively. The defect states can also be removed via ex post facto processing. Such work to understand and control defects in this important material could provide a pathway to enable better control over its properties and highlight new avenues to manipulate functions in these complex materials. 
    more » « less
  5. Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly. 
    more » « less