skip to main content


Title: A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules
Abstract Single molecule force spectroscopy is a powerful approach to probe the structure, conformational changes, and kinetic properties of biological and synthetic macromolecules. However, common approaches to apply forces to biomolecules require expensive and cumbersome equipment and relatively large probes such as beads or cantilevers, which limits their use for many environments and makes integrating with other methods challenging. Furthermore, existing methods have key limitations such as an inability to apply compressive forces on single molecules. We report a nanoscale DNA force spectrometer (nDFS), which is based on a DNA origami hinge with tunable mechanical and dynamic properties. The angular free energy landscape of the nDFS can be engineered across a wide range through substitution of less than 5% of the strand components. We further incorporate a removable strut that enables reversible toggling of the nDFS between open and closed states to allow for actuated application of tensile and compressive forces. We demonstrate the ability to apply compressive forces by inducing a large bend in a 249bp DNA molecule, and tensile forces by inducing DNA unwrapping of a nucleosome sample. These results establish a versatile tool for force spectroscopy and robust methods for designing nanoscale mechanical devices with tunable force application.  more » « less
Award ID(s):
1715321
NSF-PAR ID:
10290046
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nucleic Acids Research
ISSN:
0305-1048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single‐cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometriesin vivo, with anisotropic cytoskeletal architectures reflective of their function, and are exposed to dynamic multiaxial loads, raising the need for more complete descriptions of their anisotropic mechanical properties under complex deformations. Here, we describe the cellular microbiaxial stretching (CμBS) assay in which controlled deformations are applied to micropatterned cells while simultaneously measuring cell stress. CμBS utilizes a set of linear actuators to apply tensile or compressive, short‐ or long‐term deformations to cells micropatterned on a fluorescent bead‐doped polyacrylamide gel. Using traction force microscopy principles and the known geometry of the cell and the mechanical properties of the underlying gel, we calculate the stress within the cell to formulate stress‐strain curves that can be further used to create mechanical descriptions of the cells, such as strain energy density functions. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Assembly of CμBS stretching constructs

    Basic Protocol 2: Polymerization of micropatterned, bead‐doped polyacrylamide gel on an elastomer membrane

    Support Protocol: Cell culture and seeding onto CμBS constructs

    Basic Protocol 3: Implementing CμBS stretching protocols and traction force microscopy

    Basic Protocol 4: Data analysis and cell stress measurements

     
    more » « less
  2. Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s −1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu( i ) catalyzed azide–alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods. 
    more » « less
  3. Mechanoactive proteins are essential for a myriad of physiological and pathological processes. Guided by the advances in single-molecule force spectroscopy (SMFS), we have reached a molecular-level understanding of how mechanoactive proteins sense and respond to mechanical forces. However, even SMFS has its limitations, including the lack of detailed structural information during force-loading experiments. That is where molecular dynamics (MD) methods shine, bringing atomistic details with femtosecond time-resolution. However, MD heavily relies on the availability of high-resolution structural data, which is not available for most proteins. For instance, the Protein Data Bank currently has 192K structures deposited, against 231M protein sequences available on Uniprot. But many are betting that this gap might become much smaller soon. Over the past year, the AI-based AlphaFold created a buzz on the structural biology field by being able to predict near-native protein folds from their sequences. For some, AlphaFold is causing the merge of structural biology with bioinformatics. Here, using an in silico SMFS approach pioneered by our group, we investigate how reliable AlphaFold structure predictions are to investigate mechanical properties of Staphylococcus bacteria adhesins proteins. Our results show that AlphaFold produce extremally reliable protein folds, but in many cases is unable to predict high-resolution protein complexes accurately. Nonetheless, the results show that AlphaFold can revolutionize the investigation of these proteins, particularly by allowing high-throughput scanning of protein structures. Meanwhile, we show that the AlphaFold results need to be validated and should not be employed blindly, with the risk of obtaining an erroneous protein mechanism. 
    more » « less
  4. G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.

     
    more » « less
  5. Abstract

    Biomaterials with outstanding mechanical properties, including spider silk, wood, and cartilage, often feature an oriented nanofibrillar structure. The orientation of nanofibrils gives rise to a significant mechanical anisotropy, which is extremely challenging to characterize, especially for microscopically small or inhomogeneous samples. Here, a technique utilizing atomic force microscope indentation at multiple points combined with finite element analysis to sample the mechanical anisotropy of a thin film in a microscopically small area is reported. The system studied here is the tape‐like silk of the Chilean recluse spider, which entirely consists of strictly oriented nanofibrils giving rise to a large mechanical anisotropy. The most detailed directional nanoscale structure–property characterization of spider silk to date is presented, revealing the tensile and transverse elastic moduli as 9 and 1 GPa, respectively, and the binding strength between silk nanofibrils as 159±13 MPa. Furthermore, based on this binding strength, the nanofibrils’ surface energy is derived as 37 mJ m−2, and concludes that van der Waals forces play a decisive role in interfibrillar binding. Due to its versatility, this technique has many potential applications, including early disease diagnostics, as underlying pathological conditions can alter the local mechanical properties of tissues.

     
    more » « less