skip to main content

Title: Proxy Calibrations in the Cold-Water Coral Desmophyllum dianthus: Nutrient Concentrations in Antarctic Intermediate Water
Element-calcium ratios in the skeleton of cold-water coral Desmophyllum dianthus represent potential archives for paleo-reconstruction of several ocean properties including temperature and nutrient concentrations. However, relatively large uncertainties in these proxy calibrations and heterogeneity in the skeletal composition have limited its application to date. We address these issues by analyzing corals cultured under systematically varied seawater conditions (phosphate, barium, temperature, pH, feeding frequency) over a two-year period, and refine the calibration of P/Ca, Ba/Ca, U/Ca, and Li/Mg proxies for seawater phosphate, barium, carbonate ion concentration, and temperature, respectively. Composition of the corals is determined using laser-ablation ICPMS, with robust plasma conditions established using the Normalized Argon Index [1], and proxy element incorporation is evaluated for influences of temperature, pH, and feeding frequency. The aragonite precipitated during the stages of the culturing experiment is identified using fluorescent and geochemical labelling of the skeleton through calcein and lead isotopes, respectively. This approach allows us to resolve monthly and annual increments in these slow growing (1-2mm/year) organisms, and also to evaluate the influence of calcification rate on the composition. We address the issue of heterogeneity by adapting methods for LA-ICPMS imaging to create macroscale images to reveal the full pattern of skeletogenesis and more » related compositional variability of D. dianthus. Preliminary images suggest that heterogeneity stems from the asymmetric precipitation of aragonite, and from centers of calcification (also known as early mineralization zones) that complicate the interpretation of elemental signals throughout the skeleton, but also help to identify new skeletal regions suitable for proxy measurement. Finally, we also discuss the role of endolithic organisms in some of these specimens. [1] Fietzke, J. & Frische, M. (2016), J. Anal. At. Spectrom. 31, 234–244. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
AGU Fall Meeting 2020
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes formore »14 months. Mean calcification rates over the entire duration of the experiment ranged between −0.3 and 0.3 mg CaCO 3 g −1 d −1 . Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (Ω A = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations.« less
  2. Scleractinian corals typically form a robust calcium carbonate skeleton beneath their living tissue. This skeleton, through its trace element composition and isotope ratios, may record environmental conditions of water surrounding the coral animal. While bulk unrecrystallized aragonite coral skeletons can be used to reconstruct past ocean conditions, corals that have undergone significant diagenesis have altered geochemical signatures and are typically assumed to retain insufficient meaningful information for bulk or macrostructural analysis. However, partially recrystallized skeletons may retain organic molecular components of the skeletal organic matrix (SOM), which is secreted by the animal and directs aspects of the biomineralization process. Somemore »SOM proteins can be retained in fossil corals and can potentially provide past oceanographic, ecological, and indirect genetic information. Here, we describe a dataset of scleractinian coral skeletons, aged from modern to Cretaceous plus a Carboniferous rugosan, characterized for their crystallography, trace element composition, and amino acid compositions. We show that some specimens that are partially recrystallized to calcite yield potentially useful biochemical information whereas complete recrystalization or silicification leads to significant alteration or loss of the SOM fraction. Our analysis is informative to biochemical-paleoceanographers as it suggests that previously discounted partially recrystallized coral skeletons may indeed still be useful at the microstructural level.« less
  3. Abstract

    Kelp forests support some of the most productive and diverse ecosystems on Earth, and their ability to uptake dissolved inorganic carbon (DIC) allows them to modify local seawater chemistry, creating gradients in carbon, pH, and oxygen in their vicinity. By taking up both bicarbonate and CO2as a carbon source for photosynthesis, kelp forests can act as carbon sinks, reducing nearby acidity and increasing dissolved oxygen; creating conditions conducive to calcification. Recent stressors, however, have reduced kelp forest canopies globally; converting once large and persistent forests to fragmented landscapes of small kelp patches. In a two-year study, we determined whether fragmentedmore »kelp patches retained the ability to alter local seawater chemistry. We found that diel fluctuations of multiple parameters of carbonate chemistry were greater in the kelp canopy than in the kelp benthos and in adjacent urchin barrens, consistent with metabolic activity by the kelp. Further, kelp fragments increased pH and aragonite saturation and decreasedpCO2during the day to a similar degree as large, intact kelp forests. We conclude that small kelp patches could mitigate OA stress and serve as spatial and temporal refugia for canopy-dwelling organisms, though this effect is temporary and confined to daylight hours during the growing season.

    « less
  4. Otolith chemistry has gained increasing attention as a tool for analyzing various aspects of fish biology, such as stock dynamics, migration patterns, hypoxia and pollution exposure, and connectivity between habitats. While these studies often assume otolith elemental concentrations reflect environmental conditions, physiological processes are increasingly recognized as a modulating and/or controlling factor. In particular, biomineralization—the complex, enzyme-regulated construction of CaCO3 crystals scaffolded by proteins—is believed to play a critical role in governing otolith chemical patterns. This review aims to summarize the knowledge on otolith composition and biophysical drivers of biomineralization, present hypotheses on how biomineralization should affect element incorporation, andmore »test the validity thereof with selected case studies. Tracers of environmental history are assumed to be dominated by elements that substitute for Ca during crystal growth or that occur randomly trapped within the crystal lattice. Strontium (Sr) and barium (Ba) largely comply with the biomineralization-based hypotheses that otolith element patterns reflect environmental concentrations, without additional effects of salinity, but can be influenced by physiological processes, typically exhibiting decreasing incorporation with increasing growth. Conversely, tracers of physiology are assumed to be elements under physiological control and primarily occur protein-bound in the otolith’s organic matrix. Physiological tracers are hypothesized to reflect feeding rate and/or growth, decrease with fish age, and exhibit minimal influence of environmental concentration. The candidate elements phosphorus (P), copper (Cu) and zinc (Zn) confirm these hypotheses. Magnesium (Mg) is believed to be randomly trapped in the crystal structure and hence a candidate for environmental reconstruction, but the response to all examined drivers suggest Mg to be coupled to growth. Manganese (Mn) substitutes for Ca, but is also a co-factor in matrix proteins, and therefore exhibits otolith patterns reflecting both environmental (concentration and salinity) and physiological (ontogeny and growth) histories. A consistent temperature response was not evident across studies for either environmental or physiological tracers, presumably attributable to variable relationships between temperature and fish behavior and physiology (e.g., feeding rate, reproduction). Biomineralization thus has a controlling effect on otolith element concentrations for elements that are linked with somatic growth, but not for elements that substitute for Ca in the crystal lattice. Interpretation of the ecological significance of patterns from field samples therefore needs to consider the impact of the underlying biomineralization processes of the element in question as well as physiological processes regulating the availability of ions for inclusion in the growing crystal lattice. Such understanding will enhance the utility of this technique to address fisheries management questions.« less
  5. Abstract In this study, fore reef coral communities were exposed to high pCO2 for a year to explore the relationship between net accretion (Gnet) and community structure (planar area growth). Coral reef communities simulating the fore reef at 17-m depth on Mo’orea, French Polynesia, were assembled in three outdoor flumes (each 500 l) that were maintained at ambient (396 µatm), 782 µatm, and 1434 µatm pCO2, supplied with seawater at 300 l h−1, and exposed to light simulating 17-m depth. The communities were constructed using corals from the fore reef, and the responses of massive Porites spp., Acropora spp., and Pocillopora verrucosamore »were assessed through monthly measurements of Gnet and planar area. High pCO2 depressed Gnet but did not affect colony area by taxon, although the areas of Acropora spp. and P. verrucosa summed to cause multivariate community structure to differ among treatments. These results suggest that skeletal plasticity modulates the effects of reduced Gnet at high pCO2 on planar growth, at least over a year. The low sensitivity of the planar growth of fore reef corals to the effects of ocean acidification (OA) on net calcification supports the counterintuitive conclusion that coral community structure may not be strongly affected by OA.« less