skip to main content


Title: Crystallographic and chemical signatures in coral skeletal aragonite
Abstract

Corals nucleate and grow aragonite crystals, organizing them into intricate skeletal structures that ultimately build the world’s coral reefs. Crystallography and chemistry have profound influence on the material properties of these skeletal building blocks, yet gaps remain in our knowledge about coral aragonite on the atomic scale. Across a broad diversity of shallow-water and deep-sea scleractinian corals from vastly different environments, coral aragonites are remarkably similar to one another, confirming that corals exert control on the carbonate chemistry of the calcifying space relative to the surrounding seawater. Nuances in coral aragonite structures relate most closely to trace element chemistry and aragonite saturation state, suggesting the primary controls on aragonite structure are ionic strength and trace element chemistry, with growth rate playing a secondary role. We also show how coral aragonites are crystallographically indistinguishable from synthetic abiogenic aragonite analogs precipitated from seawater under conditions mimicking coral calcifying fluid. In contrast, coral aragonites are distinct from geologically formed aragonites, a synthetic aragonite precipitated from a freshwater solution, and mollusk aragonites. Crystallographic signatures have future applications in understanding the material properties of coral aragonite and predicting the persistence of coral reefs in a rapidly changing ocean.

 
more » « less
Award ID(s):
2016133
NSF-PAR ID:
10363174
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Coral Reefs
Volume:
41
Issue:
1
ISSN:
0722-4028
Page Range / eLocation ID:
p. 19-34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Element-calcium ratios in the skeleton of cold-water coral Desmophyllum dianthus represent potential archives for paleo-reconstruction of several ocean properties including temperature and nutrient concentrations. However, relatively large uncertainties in these proxy calibrations and heterogeneity in the skeletal composition have limited its application to date. We address these issues by analyzing corals cultured under systematically varied seawater conditions (phosphate, barium, temperature, pH, feeding frequency) over a two-year period, and refine the calibration of P/Ca, Ba/Ca, U/Ca, and Li/Mg proxies for seawater phosphate, barium, carbonate ion concentration, and temperature, respectively. Composition of the corals is determined using laser-ablation ICPMS, with robust plasma conditions established using the Normalized Argon Index [1], and proxy element incorporation is evaluated for influences of temperature, pH, and feeding frequency. The aragonite precipitated during the stages of the culturing experiment is identified using fluorescent and geochemical labelling of the skeleton through calcein and lead isotopes, respectively. This approach allows us to resolve monthly and annual increments in these slow growing (1-2mm/year) organisms, and also to evaluate the influence of calcification rate on the composition. We address the issue of heterogeneity by adapting methods for LA-ICPMS imaging to create macroscale images to reveal the full pattern of skeletogenesis and related compositional variability of D. dianthus. Preliminary images suggest that heterogeneity stems from the asymmetric precipitation of aragonite, and from centers of calcification (also known as early mineralization zones) that complicate the interpretation of elemental signals throughout the skeleton, but also help to identify new skeletal regions suitable for proxy measurement. Finally, we also discuss the role of endolithic organisms in some of these specimens. [1] Fietzke, J. & Frische, M. (2016), J. Anal. At. Spectrom. 31, 234–244. 
    more » « less
  2. Abstract

    As mass bleaching events decimate stony coral populations, production of calcium carbonate is diminished on reefs, dampening their capacity to keep pace with rising sea levels. However, perturbations to the calcification process of surviving wild corals during bleaching are poorly constrained, owing to the lack of suitable techniques to retroactively extract this information from coral skeletons at sufficient resolution. Here, we use novel Raman spectrometry techniques to test the biogeochemical response of long‐lived corals before, during, and after bleaching. Maintenance of high aragonite saturation state (ΩAr) in the coral calcifying fluid is key to driving rapid skeletal growth but would be expected to decrease when corals become energetically depleted without their symbionts. Contrary to this expectation, our results demonstrate that corals upregulate calcifying fluid ΩArduring bleaching and for at least 2 yr after recovery. This indicates that the calcification process of coral‐bleaching survivors is unexpectedly resilient.

     
    more » « less
  3. Scleractinian corals typically form a robust calcium carbonate skeleton beneath their living tissue. This skeleton, through its trace element composition and isotope ratios, may record environmental conditions of water surrounding the coral animal. While bulk unrecrystallized aragonite coral skeletons can be used to reconstruct past ocean conditions, corals that have undergone significant diagenesis have altered geochemical signatures and are typically assumed to retain insufficient meaningful information for bulk or macrostructural analysis. However, partially recrystallized skeletons may retain organic molecular components of the skeletal organic matrix (SOM), which is secreted by the animal and directs aspects of the biomineralization process. Some SOM proteins can be retained in fossil corals and can potentially provide past oceanographic, ecological, and indirect genetic information. Here, we describe a dataset of scleractinian coral skeletons, aged from modern to Cretaceous plus a Carboniferous rugosan, characterized for their crystallography, trace element composition, and amino acid compositions. We show that some specimens that are partially recrystallized to calcite yield potentially useful biochemical information whereas complete recrystalization or silicification leads to significant alteration or loss of the SOM fraction. Our analysis is informative to biochemical-paleoceanographers as it suggests that previously discounted partially recrystallized coral skeletons may indeed still be useful at the microstructural level. 
    more » « less
  4. Abstract

    The implications of ocean acidification are acute for calcifying organisms, notably tropical reef corals, for which accretion generally is depressed and dissolution enhanced at reduced seawater pH. We describe year‐long experiments in which back reef and fore reef (17‐m depth) communities from Moorea, French Polynesia, were incubated outdoors under pCO2regimes reflecting endpoints of representative concentration pathways (RCPs) expected by the end the century. Incubations were completed in three to four flumes (5.0 × 0.3 m, 500 L) in which seawater was refreshed and circulated at 0.1 m s−1, and the response of the communities was evaluated monthly by measurements of net community calcification (NCC) and net community productivity (NCP). For both communities, NCC (but not NCP) was affected by treatments and time, with NCC declining with increasing pCO2, and for the fore reef, becoming negative (i.e., dissolution was occurring) at the highest pCO2(1067–1433μatm, RCP8.5). There was scant evidence of community adjustment to reduce the negative effects of ocean acidification, and inhibition of NCC intensified in the back reef as the abundance of massivePoritesspp. declined. These results highlight the risks of dissolution under ocean acidification for coral reefs and suggest these effects will be most acute in fore reef habitats. Without signs of amelioration of the negative effects of ocean acidification during year‐long experiments, it is reasonable to expect that the future of coral reefs in acidic seas can be predicted from their current known susceptibility to ocean acidification.

     
    more » « less
  5. Abstract

    Ocean acidification is expected to negatively impact calcifying organisms, yet we lack understanding of their acclimation potential in the natural environment. Here we measured geochemical proxies (δ11B and B/Ca) inPorites astreoidescorals that have been growing for their entire life under low aragonite saturation (Ωsw: 0.77–1.85). This allowed us to assess the ability of these corals to manipulate the chemical conditions at the site of calcification (Ωcf), and hence their potential to acclimate to changing Ωsw. We show that lifelong exposure to low Ωswdid not enable the corals to acclimate and reach similar Ωcfas corals grown under ambient conditions. The lower Ωcfat the site of calcification can explain a large proportion of the decreasingP. astreoidescalcification rates at low Ωsw. The naturally elevated seawater dissolved inorganic carbon concentration at this study site shed light on how different carbonate chemistry parameters affect calcification conditions in corals.

     
    more » « less