skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Unsupervised manifold learning of collective behavior
Collective behavior is an emergent property of numerous complex systems, from financial markets to cancer cells to predator-prey ecological systems. Characterizing modes of collective behavior is often done through human observation, training generative models, or other supervised learning techniques. Each of these cases requires knowledge of and a method for characterizing the macro-state(s) of the system. This presents a challenge for studying novel systems where there may be little prior knowledge. Here, we present a new unsupervised method of detecting emergent behavior in complex systems, and discerning between distinct collective behaviors. We require only metrics, d (1) , d (2) , defined on the set of agents, X , which measure agents’ nearness in variables of interest. We apply the method of diffusion maps to the systems ( X , d ( i ) ) to recover efficient embeddings of their interaction networks. Comparing these geometries, we formulate a measure of similarity between two networks, called the map alignment statistic (MAS). A large MAS is evidence that the two networks are codetermined in some fashion, indicating an emergent relationship between the metrics d (1) and d (2) . Additionally, the form of the macro-scale organization is encoded in the covariances among the two sets of diffusion map components. Using these covariances we discern between different modes of collective behavior in a data-driven, unsupervised manner. This method is demonstrated on a synthetic flocking model as well as empirical fish schooling data. We show that our state classification subdivides the known behaviors of the school in a meaningful manner, leading to a finer description of the system’s behavior.  more » « less
Award ID(s):
1848576
NSF-PAR ID:
10290194
Author(s) / Creator(s):
; ;
Editor(s):
Grilli, Jacopo
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
2
ISSN:
1553-7358
Page Range / eLocation ID:
e1007811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cells interacting over an extracellular matrix (ECM) exhibit emergent behaviors, which are often observably different from single-cell dynamics. Fibroblasts embedded in a 3-D ECM, for example, compact the surrounding gel and generate an anisotropic strain field, which cannot be observed in single cellinduced gel compaction. This emergent matrix behavior results from collective intracellular mechanical interaction and is crucial to explain the large deformations and mechanical tensions that occur during embryogenesis, tissue development and wound healing. Prediction of multi-cellular interactions entails nonlinear dynamic simulation, which is prohibitively complex to compute using first principles especially as the number of cells increase. Here, we introduce a new methodology for predicting nonlinear behaviors of multiple cells interacting mechanically through a 3D ECM. In the proposed method, we first apply Dual- Faceted Linearization to nonlinear dynamic systems describing cell/matrix behavior. Using this unique linearization method, the original nonlinear state equations can be expressed with a pair of linear dynamic equations by augmenting the independent state variables with auxiliary variables which are nonlinearly dependent on the original states. Furthermore, we can find a reduced order latent space representation of the dynamic equations by orthogonal projection onto the basis of a lower dimensional linear manifold within the augmented variable space. Once converted to latent variable equations, we superpose multiple dynamic systems to predict their collective behaviors. The method is computationally efficient and accurate as demonstrated through its application for prediction of emergent cell induced ECM compaction. 
    more » « less
  2. In this paper, a distributed swarm control problem is studied for large-scale multi-agent systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges to control design due to its large number of agents. It might be more difficult for developing the appropriate control to achieve complicated missions such as collective swarming. To address these challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then, a cooperative game is used to formulate the distributed swarm control for multi-group leaders, and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively. Using the interaction between leaders and followers, the mean field game is used to continue the collective swarm behavior from leaders to followers smoothly without raising the computational complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to learn the intelligent optimal distributed swarm control for multi-group leader–follower systems. Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate the performance of the developed scheme. 
    more » « less
  3. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  4. Web-based interactions enable agents to coordinate and generate collective action. Coordination can facilitate the spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the thresholds (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally different from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Moreover, these models utilize different mechanisms for driving contagion. We evaluate three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook, using nine social (media) networks. We provide theoretical results indicating the intractability in identifying all node-maximal bicliques in a network, which is the characterizing network structure that produces common knowledge. Bicliques are required for model execution. We also show that one of the mechanisms (named PD2) dominates another mechanism (named ND2). Using simulations, we compute the spread of contagion on these networks in the Facebook model and demonstrate that different mechanisms can produce widely varying behaviors in terms of the extent of the spread and the speed of contagion transmission. We also quantify, through the fraction of nodes acquiring contagion, differences in the effects of the ND2 and PD2 mechanisms, which depend on network structure and other simulation inputs. 
    more » « less
  5. null (Ed.)
    Web-based interactions enable agents to coordinate and generate collective action. Coordination can facilitate the spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the thresholds (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally di fferent from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Moreover, these models utilize different mechanisms for driving contagion. We evaluate three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook, using nine social (media) networks. We provide theoretical results indicating the intractability in identifying all node-maximal bicliques in a network, which is the characterizing network structure that produces common knowledge. Bicliques are required for model execution. We also show that one of the mechanisms (named PD2) dominates another mechanism (named ND2). Using simulations, we compute the spread of contagion on these networks in the Facebook model and demonstrate that di fferent mechanisms can produce widely varying behaviors in terms of the extent of the spread and the speed of contagion transmission. We also quantify, through the fraction of nodes acquiring contagion, di erences in the eff ects of the ND2 and PD2 mechanisms, which depend on network structure and other simulation inputs. 
    more » « less