skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disruption of the Putative Ribosome-Binding Motif of a Scaffold Protein Impairs Cytochrome c Oxidase Subunit Expression in Leishmania major
ABSTRACT During their parasitic life cycle, through sandflies and vertebrate hosts, Leishmania parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in Leishmania gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of Leishmania metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment. Such functions, including generation of ATP, depend upon the expression of many mitochondrial proteins, including subunits of cytochrome c oxidase (COX). Significantly, under mammalian temperature conditions, expression of Leishmania major COX subunit IV (LmCOX4) and virulence are dependent upon two copies of LACK , a gene that encodes the ribosome-associated scaffold protein, LACK ( Leishmania ortholog of RACK1 [receptor for activated C kinase]). Targeted replacement of an endogenous LACK copy with a putative ribosome-binding motif-disrupted variant (LACK R34D35G36 →LACK D34D35E36 ) resulted in thermosensitive parasites that showed diminished LmCOX4 expression, mitochondrial fitness, and replication in macrophages. Surprisingly, despite these phenotypes, LACK D34D35E36 associated with monosomes and polysomes and showed no major impairment of global protein synthesis. Collectively, these data suggest that wild-type (WT) LACK orchestrates robust LmCOX4 expression and mitochondrial fitness to ensure parasite virulence, via optimized functional interactions with the ribosome. IMPORTANCE Leishmania parasites are trypanosomatid protozoans that persist in infected human hosts to cause a spectrum of pathologies, from cutaneous and mucocutaneous manifestations to visceral leishmaniasis caused by Leishmania donovani . The latter is usually fatal if not treated. Persistence of L. major in the mammalian host depends upon maintaining gene-regulatory programs to support essential parasite metabolic functions. These include expression and assembly of mitochondrial L. major cytochrome c oxidase (LmCOX) subunits, important for Leishmania ATP production. Significantly, under mammalian conditions, WT levels of LmCOX subunits require threshold levels of the Leishmania ribosome-associated scaffold protein, LACK. Unexpectedly, we find that although disruption of LACK’s putative ribosome-binding motif does not grossly perturb ribosome association or global protein synthesis, it nonetheless impairs COX subunit expression, mitochondrial function, and virulence. Our data indicate that the quality of LACK’s interaction with Leishmania ribosomes is critical for LmCOX subunit expression and parasite mitochondrial function in the mammalian host. Collectively, these findings validate LACK’s ribosomal interactions as a potential therapeutic target.  more » « less
Award ID(s):
1359140 1659752
PAR ID:
10290334
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Moreno, Silvia N.
Date Published:
Journal Name:
mSphere
Volume:
4
Issue:
2
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kaplan, C (Ed.)
    Abstract Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of cytochrome c oxidase, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, cytochrome c oxidase assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of cytochrome c oxidase. 
    more » « less
  2. Abstract Haemosporidians constitute a monophyletic group of vector-borne parasites that infect a wide range of vertebrate hosts, including Neotropical lizards. The remarkable diversity of these host-parasite associations and inadequate research on certain parasite groups have resulted in controversial haemosporidian taxonomy. Herein, we rediscover erythrocytic and non-erythrocytic haemosporidians infecting golden tegus (Tupinambis teguixin) from Brazil and Colombia. The erythrocyte-inhabiting parasite belongs toPlasmodiumsp., and the non-erythrocytic form was identified asSaurocytozoon tupinambi, previously attributed to the Family Leucocytozoidae. These non-pigmented haemosporidian parasites do not multiply in the blood. The relationships between theSaurocytozoonand Leucocytozoidae species were discussed for many years, especially during the 1970s. However, cytochrome b (cytb) sequences and the mitochondrial genomes recovered for this species strongly support classifying this parasite as aPlasmodiumtaxon. Therefore, we proposed a new combination for this parasite,Plasmodium(Saurocytozoon)tupinambicomb. nov., whereSaurocytozoonis retained as a subgenus due to its distinct morphology. These results reinforce that a broader definition of Plasmodiidae must include saurian parasites that develop non-pigmented leucocytozoid-like gametocytes. 
    more » « less
  3. Abstract Background The recognition and delineation of morphologically indistinguishable cryptic species can have broad implications for wildlife conservation, disease ecology and accurate estimates of biodiversity. Parasites are intriguing in the study of cryptic speciation because unique evolutionary pressures and diversifying factors are generated by ecological characteristics of host-parasite relationships, including host specificity. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats that generally exhibit high host specificity. One rare exception is Penicillidia fulvida (Diptera: Nycteribiidae), an African bat fly found in association with many phylogenetically distant hosts. One explanation for P. fulvida ’s extreme polyxeny is that it may represent a complex of host-specific yet cryptic species, an increasingly common finding in molecular genetic studies of supposed generalist parasites. Methods A total of 65 P. fulvida specimens were collected at 14 localities across Kenya, from bat species representing six bat families. Mitochondrial cytochrome c oxidase subunit 1 ( COI ) and nuclear 28S ribosomal RNA (rRNA) sequences were obtained from 59 specimens and used to construct Bayesian and maximum likelihood phylogenies. Analysis of molecular variance was used to determine how genetic variation in P. fulvida was allocated among host taxa. Results The 28S rRNA sequences studied were invariant within P. fulvida . Some genetic structure was present in the COI sequence data, but this could be more parsimoniously explained by geography than host family. Conclusions Our results support the status of P. fulvida as a rare example of a single bat fly species with primary host associations spanning multiple bat families. Gene flow among P. fulvida utilizing different host species may be promoted by polyspecific roosting behavior in bats, and host preference may also be malleable based on bat assemblages occupying shared roosts. The proclivity of generalist parasites to switch hosts makes them more likely to vector or opportunistically transmit pathogens across host species boundaries. Consequently, the presence of polyxenous bat flies is an important consideration to disease ecology as bat flies become increasingly known to be associated with bat pathogens. Graphical Abstract 
    more » « less
  4. Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). TheToxoplasma gondiiPV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network’s functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family ofToxoplasmakinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection. 
    more » « less
  5. Abstract Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasiteSerratia marcescensto killCaenorhabditis elegansin populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations. 
    more » « less