Abstract The objective of this study was to investigate the importance of multiple county-level features in the trajectory of COVID-19. We examined feature importance across 2787 counties in the United States using data-driven machine learning models. Existing mathematical models of disease spread usually focused on the case prediction with different infection rates without incorporating multiple heterogeneous features that could impact the spatial and temporal trajectory of COVID-19. Recognizing this, we trained a data-driven model using 23 features representing six key influencing factors affecting the pandemic spread: social demographics of counties, population activities, mobility within the counties, movement across counties, diseasemore »
Supporting COVID-19 Policy Response with Large-scale Mobility-based Modeling
Mobility restrictions have been a primary intervention for controlling the spread of COVID-19, but they also place a significant economic burden on individuals and businesses. To balance these competing demands, policymakers need analytical tools to assess the costs and benefits of different mobility reduction measures. In this paper, we present our work motivated by our interactions with the Virginia Department of Health on a decision-support tool that utilizes large-scale data and epidemiological modeling to quantify the impact of changes in mobility on infection rates. Our model captures the spread of COVID-19 by using a fine-grained, dynamic mobility network that encodes the hourly movements of people from neighborhoods to individual places, with over 3 billion hourly edges. By perturbing the mobility network, we can simulate a wide variety of reopening plans and forecast their impact in terms of new infections and the loss in visits per sector. To deploy this model in practice, we built a robust computational infrastructure to support running millions of model realizations, and we worked with policymakers to develop an interactive dashboard that communicates our model's predictions for thousands of potential policies.
- Publication Date:
- NSF-PAR ID:
- 10290336
- Journal Name:
- KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
- Issue:
- August 2021
- Page Range or eLocation-ID:
- 2632 to 2642
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epidemics like Covid-19 and Ebola have impacted people’s lives signifcantly. The impact of mobility of people across the countries or states in the spread of epidemics has been signifcant. The spread of disease due to factors local to the population under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread ofmore »
-
Agent-based models (ABM) play a prominent role in guiding critical decision-making and supporting the development of effective policies for better urban resilience and response to the COVID-19 pandemic. However, many ABMs lack realistic representations of human mobility, a key process that leads to physical interaction and subsequent spread of disease. Therefore, we propose the application of Latent Dirichlet Allocation (LDA), a topic modeling technique, to foot-traffic data to develop a realistic model of human mobility in an ABM that simulates the spread of COVID-19. In our novel approach, LDA treats POIs as "words" and agent home census block groups (CBGs)more »
-
Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To addressmore »
-
Abstract. Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understandingmore »