The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments.
more »
« less
Characterization and chemical reactivity of room-temperature-stable Mn III –alkylperoxo complexes
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S− ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII –OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5− ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)- N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OO)tBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with t BuOOH and CmOOH, respectively. Both of the new Mn III–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII (OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)] + with PPh3 provided evidence of heterolytic cleavage of the O–O bond. These studies reveal that both the stability and chemical reactivity of MnIII–OOR complexes can be tuned by the local coordination sphere.
more »
« less
- Award ID(s):
- 1900384
- PAR ID:
- 10290438
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nickel complexes have been widely employed as catalysts in C–C and C–heteroatom bond formation reactions. While Ni(0), Ni( i ), and Ni( ii ) intermediates are most relevant in these transformations, recently Ni( iii ) and Ni( iv ) species have also been proposed to play a role in catalysis. Reported herein is the synthesis, detailed characterization, and reactivity of a series of Ni( ii ) and Ni( iii ) metallacycle complexes stabilized by tetradentate pyridinophane ligands with various N-substituents. Interestingly, while the oxidation of the Ni( ii ) complexes with various other oxidants led to exclusive C–C bond formation in very good yields, the use of O 2 or H 2 O 2 as oxidants led to formation of appreciable amounts of C–O bond formation products, especially for the Ni( ii ) complex supported by an asymmetric pyridinophane ligand containing one tosyl N-substituent. Moreover, cryo-ESI-MS studies support the formation of several high-valent Ni species as key intermediates in this uncommon Ni-mediated oxygenase-type chemistry.more » « less
-
null (Ed.)Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H 2 O 2 , [Mn( H2qp1 )(MeCN)] 2+ and [Mn( H4qp2 )Br 2 ], could also catalytically degrade superoxide. Subsequently, [Zn( H2qp1 )(OTf)] + was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O 2 ˙ − to O 2 and H 2 O 2 , raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O 2 ˙ − in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O 2 ˙ − to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2 , we detect Mn( iii )-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn( iii )-hydroperoxo compound, and what is formally a Mn( iv )-oxo species with the monoquinolate/mono- para -quinone form of H4qp2 . With the monoquinolic H2qp1 , we observe a Mn( ii )-superoxo ↔ Mn( iii )-peroxo intermediate with the oxidized para -quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O 2 ˙ − oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity ( k cat ∼ 10 8 M −1 s −1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn( ii ) porphyrin-based SOD mimics.more » « less
-
The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds.more » « less
-
Abstract Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion.more » « less
An official website of the United States government

