skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting species distributions and community composition using satellite remote sensing predictors
Abstract Biodiversity is rapidly changing due to changes in the climate and human related activities; thus, the accurate predictions of species composition and diversity are critical to developing conservation actions and management strategies. In this paper, using satellite remote sensing products as covariates, we constructed stacked species distribution models (S-SDMs) under a Bayesian framework to build next-generation biodiversity models. Model performance of these models was assessed using oak assemblages distributed across the continental United States obtained from the National Ecological Observatory Network (NEON). This study represents an attempt to evaluate the integrated predictions of biodiversity models—including assemblage diversity and composition—obtained by stacking next-generation SDMs. We found that applying constraints to assemblage predictions, such as using the probability ranking rule, does not improve biodiversity prediction models. Furthermore, we found that independent of the stacking procedure (bS-SDM versus pS-SDM versus cS-SDM), these kinds of next-generation biodiversity models do not accurately recover the observed species composition at the plot level or ecological-community scales (NEON plots are 400 m 2 ). However, these models do return reasonable predictions at macroecological scales, i.e., moderately to highly correct assignments of species identities at the scale of NEON sites (mean area ~ 27 km 2 ). Our results provide insights for advancing the accuracy of prediction of assemblage diversity and composition at different spatial scales globally. An important task for future studies is to evaluate the reliability of combining S-SDMs with direct detection of species using image spectroscopy to build a new generation of biodiversity models that accurately predict and monitor ecological assemblages through time and space.  more » « less
Award ID(s):
2021898 2017843 1745562
PAR ID:
10290521
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Species distribution models (SDMs) have become increasingly popular for making ecological inferences, as well as predictions to inform conservation and management. In predictive modeling, practitioners often use correlative SDMs that only evaluate a single spatial scale and do not account for differences in life stages. These modeling decisions may limit the performance of SDMs beyond the study region or sampling period. Given the increasing desire to develop transferable SDMs, a robust framework is necessary that can account for known challenges of model transferability. Here, we propose a comparative framework to develop transferable SDMs, which was tested using satellite telemetry data from green turtles (Chelonia mydas). This framework is characterized by a set of steps comparing among different models based on (1) model algorithm (e.g., generalized linear model vs. Gaussian process regression) and formulation (e.g., correlative model vs. hybrid model), (2) spatial scale, and (3) accounting for life stage. SDMs were fitted as resource selection functions and trained on data from the Gulf of Mexico with bathymetric depth, net primary productivity, and sea surface temperature as covariates. Independent validation datasets from Brazil and Qatar were used to assess model transferability. A correlative SDM using a hierarchical Gaussian process regression (HGPR) algorithm exhibited greater transferability than a hybrid SDM using HGPR, as well as correlative and hybrid forms of hierarchical generalized linear models. Additionally, models that evaluated habitat selection at the finest spatial scale and that did not account for life stage proved to be the most transferable in this study. The comparative framework presented here may be applied to a variety of species, ecological datasets (e.g., presence‐only, presence‐absence, mark‐recapture), and modeling frameworks (e.g., resource selection functions, step selection functions, occupancy models) to generate transferable predictions of species–habitat associations. We expect that SDM predictions resulting from this comparative framework will be more informative management tools and may be used to more accurately assess climate change impacts on a wide array of taxa. 
    more » « less
  2. Abstract As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN’s extent of occurrence (EOO) is the general region including the species’ range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data‐poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data‐poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice:Heteromys australis(Least Concern) andHeteromys teleus(Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species’ congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low‐data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations forH. teleusas its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. ForH. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species’ true occupancy within the post‐processed SDM prediction, we recommend that an updated listing forH. teleusinclude these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post‐processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation. 
    more » « less
  3. Dainton, John (Ed.)
    Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’. 
    more » « less
  4. Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales. 
    more » « less
  5. The National Ecological Observation Network (NEON) is a thirty-year, open-source, continental-scale ecological observation platform. The objective of the NEON project is to provide data to facilitate the understanding and forecasting of the ecological impacts of anthropogenic change at a continental scale. Fish are sentinel taxa in freshwater systems, and the NEON has been sampling and collecting fish assemblage data at wadable stream sites for six years. One to two NEON wadable stream sites are located in sixteen domains from Alaska to Puerto Rico. The goal of site selection was that sites represent local conditions but with the intention that site data be analyzed at a continental observatory level. Site selection did not include fish assemblage criteria. Without using fish assemblage criteria, anomalies in fish assemblages at the site level may skew the expected spatial patterns of North American stream fish assemblages, thereby hindering change detection in subsequent years. However, if NEON stream sites are representative of the current spatial distributions of North American stream fish assemblages, we could expect to find the most diverse sites in Atlantic drainages and the most depauperate sites in Pacific drainages. Therefore, we calculated the alpha and regional (beta) diversities of wadable stream sites to highlight spatial patterns. As expected, NEON sites followed predictable spatial diversity patterns, which could facilitate future change detection and attribution to changes in environmental drivers, if any. 
    more » « less