skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of scale-dependent geodiversity on species distribution models in a biodiversity hotspot
Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’.  more » « less
Award ID(s):
2200792
PAR ID:
10525700
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
Dainton, John
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Edition / Version:
1
Volume:
382
Issue:
2269
ISSN:
1364-503X
Page Range / eLocation ID:
20230057
Subject(s) / Keyword(s):
species distribution models geodiversity spatial heterogeneity mammal conservation Colombia
Format(s):
Medium: X Size: 1 MB Other: PDF
Size(s):
1 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise. 
    more » « less
  2. Abstract IssueGeodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity–geodiversity relationships across scales. EvidenceWe show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) andc. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. ConclusionWith the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity–geodiversity relationships across scales and guide the conservation of nature. 
    more » « less
  3. Abstract Understanding species distributions is a global priority for mitigating environmental pressures from human activities. Ample studies have identified key environmental (climate and habitat) predictors and the spatial scales at which they influence species distributions. However, regarding human influence, such understandings are largely lacking. Here, to advance knowledge concerning human influence on species distributions, we systematically reviewed species distribution modelling (SDM) articles and assessed current modelling efforts. We searched 12,854 articles and found only 1,429 articles using human predictors within SDMs. Collectively, these studies of >58,000 species used 2,307 unique human predictors, suggesting that in contrast to environmental predictors, there is no ‘rule of thumb’ for human predictor selection in SDMs. The number of human predictors used across studies also varied (usually one to four per study). Moreover, nearly half the articles projecting to future climates held human predictors constant over time, risking false optimism about the effects of human activities compared with climate change. Advances in using human predictors in SDMs are paramount for accurately informing and advancing policy, conservation, management and ecology. We show considerable gaps in including human predictors to understand current and future species distributions in the Anthropocene, opening opportunities for new inquiries. We pose 15 questions to advance ecological theory, methods and real-world applications. 
    more » « less
  4. Abstract AimSpecies distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. InnovationHere we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States. Main conclusionsWe found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation. 
    more » « less
  5. Abstract AimWe may be able to buffer biodiversity against the effects of ongoing climate change by prioritizing the protection of habitat with diverse physical features (high geodiversity) associated with ecological and evolutionary mechanisms that maintain high biodiversity. Nonetheless, the relationships between biodiversity and habitat vary with spatial and biological context. In this study, we compare how well habitat geodiversity (spatial variation in abiotic processes and features) and climate explain biodiversity patterns of birds and trees. We also evaluate the consistency of biodiversity–geodiversity relationships across ecoregions. LocationContiguous USA. Time period2007–2016. Taxa studiedBirds and trees. MethodsWe quantified geodiversity with remotely sensed data and generated biodiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey datasets. We fitted multivariate regressions to alpha, beta and gamma diversity, accounting for spatial autocorrelation among Nature Conservancy ecoregions and relationships among taxonomic, phylogenetic and functional biodiversity. We fitted models including climate alone (temperature and precipitation), geodiversity alone (topography, soil and geology) and climate plus geodiversity. ResultsA combination of geodiversity and climate predictor variables fitted most forms of bird and tree biodiversity with < 10% relative error. Models using geodiversity and climate performed better for local (alpha) and regional (gamma) diversity than for turnover‐based (beta) diversity. Among geodiversity predictors, variability of elevation fitted biodiversity best; interestingly, topographically diverse places tended to have higher tree diversity but lower bird diversity. Main conclusionsAlthough climatic predictors tended to have larger individual effects than geodiversity, adding geodiversity improved climate‐only models of biodiversity. Geodiversity was correlated with biodiversity more consistently than with climate across ecoregions, but models tended to have a poor fit in ecoregions held out of the training dataset. Patterns of geodiversity could help to prioritize conservation efforts within ecoregions. However, we need to understand the underlying mechanisms more fully before we can build models transferable across ecoregions. 
    more » « less