skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Positive response of tree productivity to warming is reversed by increased tree density at the Arctic tundra-taiga ecotone
The transition zone between the northern boreal forest and the arctic tundra, known as the tundra-taiga ecotone (TTE) has undergone rapid warming in recent decades. In response to this warming, tree density, growth, and stand productivity are expected to increase. Increases in tree density have the potential to negate the positive impacts of warming on tree growth through a reduction in the active layer and an increase in competitive interactions. We assessed the effects of tree density on tree growth and climate-growth responses of Cajander larch (Larix cajanderi) and on trends in the normalized difference vegetation index (NDVI) in the TTE of Northeast Siberia. We examined 19 mature forest stands that all established after a fire in 1940 and ranged in tree density from 300 to 37,000 stems ha-1. High density stands with shallow active layers had lower tree growth, higher stand productivity, and more negative growth responses to growing season temperatures compared to low density stands with deep active layers. Variation in stand productivity across the density gradient was not captured by Landsat derived NDVI, but NDVI did capture annual variations in stand productivity. Our results suggest that the expected increases in tree density following fires at the TTE may effectively limit tree growth and that NDVI is unlikely to capture increasing productivity associated with changes in tree density.  more » « less
Award ID(s):
2100773 1708307 1636476 1708344
PAR ID:
10290523
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Forest Research
ISSN:
0045-5067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Greater tree density and forest productivity at the tundra–taiga ecotone (TTE) are expected with climate warming, with potential feedbacks to the climate system. Yet, competition for nitrogen (N) may impact TTE dynamics. Greater tree density will likely increase N demand, while reducing N supply through soil shading and slower decomposition rates. We explored whether characteristics of roots and root‐associated fungi important to N acquisition responded to changes in density at the TTE and were related to above‐ground stand productivity and N cycling.We measured rooting depth, uptake of N forms among soil layers and ectomycorrhizal (EcM) colonization and composition along a natural tree density gradient of monodominant larchLarix cajanderiin northeastern Siberia. We tested relationships between larch root and fungal characteristics, above‐ground productivity and stand‐level N cycling parameters.Overall, there was preferential uptake of ammonium compared to glycine or nitrate. Nitrogen uptake was greatest in shallow soils of the organic horizon and related to root chemistry, root‐associated fungi and above‐ground N cycling parameters, but the direction of these relationships depended on N form. Uptake of different N forms, rooting depth and EcM colonization and composition were not related to tree density, but fungal composition was correlated with root N chemistry and above‐ground N cycling parameters. In addition to EcM, the abundance of dark septate endophytes and other ascomycetous taxa was positively related to N uptake and above‐ground N cycling parameters.Synthesis. There was little impact of tree density on root and fungal parameters related to N acquisition suggesting intraspecific larch competition for N was not amplified with increased density. There was, however, a strong impact of root‐associated fungi on N uptake and stand N dynamics regardless of tree density. Together, this suggests an important role of root‐associated fungi on broadscale patterns of N cycling in TTE larch forests independent of changes in tree density expected with climate warming. 
    more » « less
  2. Abstract As climate warms, tree density at the taiga–tundra ecotone (TTE) is expected to increase, which may intensify competition for belowground resources in this nitrogen (N)‐limited environment. To determine the impacts of increased tree density on N cycling and productivity, we examined edaphic properties indicative of soil N availability along with aboveground and belowground tree‐level traits and stand characteristics related to carbon (C) and N cycling across a tree density gradient of monodominant larch (Larix cajanderi) at the TTE in far northeastern Siberia. We found no consistent evidence from soil, tree, or stand‐level N cycling characteristics of lower N availability or greater intraspecific competition for N with increased density. Active layer thickness declined, but resin‐sorbed N and soil organic layer thickness did not covary with increased tree density. There was, however, greater allocation belowground to stand‐level coarse and fine roots with increased tree density, an allocation pattern suggestive of limited soil resources. Foliar traits related to C (%C, δ13C, and resorption) were responsive to density indicating the importance of non‐nutrient resources, like light, to foliar stoichiometry. As tree density increased and individual trees had lower productivity, tree‐level N and biomass pools aboveground and belowground declined tracking decreases in N uptake, N resorption, N use efficiency, and allocation to slow cycling tissues like wood. At the stand level, our findings show high N turnover with increased N acquisition, allocation to short‐lived tissues with relatively high N content and reduced N residence time, and greater stand productivity as tree density increased. Yet, these positive relationships were curtailed at the highest tree densities. Our observations of shifts in biomass, C and N allocation, and loss aboveground, along with greater root density with increased tree density, could have strong impacts on C and N cycling and should be represented in models of TTE dynamics and feedbacks to climate. 
    more » « less
  3. Abstract Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (Larixspp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand. Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes. 
    more » « less
  4. The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure. 
    more » « less
  5. null (Ed.)
    Cajander larch (Larix cajanderi Mayr.) forests of the Siberian Arctic are experiencing increased wildfire activity in conjunction with climate warming. These shifts could affect postfire variation in the density and arrangement of trees and understory plant communities. To better understand how understory plant composition, abundance, and diversity vary with tree density, we surveyed understory plant communities and stand characteristics (e.g., canopy cover, active layer depth, and soil organic layer depth) within 25 stands representing a density gradient of similarly-aged larch trees that established following a 1940 fire near Cherskiy, Russia. Understory plant diversity and mean total plant abundance decreased with increased canopy cover. Canopy cover was also the most important variable affecting individual species’ abundances. In general, tall shrubs (e.g., Betula nana subsp. exilis) were more abundant in low-density stands with high light availability, and mosses (e.g., Sanionia spp.) were more abundant in high-density stands with low light availability. These results provide evidence that postfire variation in tree recruitment affects understory plant community composition and diversity as stands mature. Therefore, projected increases in wildfire activity in the Siberian Arctic could have cascading impacts on forest structure and composition in both overstory and understory plant communities. 
    more » « less