skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gene duplication at the Fascicled ear1 locus controls the fate of inflorescence meristem cells in maize
Plant meristems are self-renewing groups of pluripotent stem cells that produce lateral organs in a stereotypical pattern. Of interest is how the radially symmetrical meristem produces laminar lateral organs. Both the male and female inflorescence meristems of the dominant Fascicled ear ( Fas1 ) mutant fail to grow as a single point and instead show deep branching. Positional cloning of two independent Fas1 alleles identified an ∼160 kb region containing two floral genes, the MADS-box gene, zmm8 , and the YABBY gene, drooping leaf2 ( drl2 ). Both genes are duplicated within the Fas1 locus and spatiotemporally misexpressed in the mutant inflorescence meristems. Increased zmm8 expression alone does not affect inflorescence development; however, combined misexpression of zmm8 , drl2 , and their syntenic paralogs zmm14 and drl1 , perturbs meristem organization. We hypothesize that misexpression of the floral genes in the inflorescence and their potential interaction cause ectopic activation of a laminar program, thereby disrupting signaling necessary for maintenance of radially symmetrical inflorescence meristems. Consistent with this hypothesis, RNA sequencing and in situ analysis reveal altered expression patterns of genes that define distinct zones of the meristem and developing leaf. Our findings highlight the importance of strict spatiotemporal patterns of expression for both zmm8 and drl2 and provide an example of phenotypes arising from tandem gene duplications.  more » « less
Award ID(s):
1733606
PAR ID:
10290601
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
7
ISSN:
0027-8424
Page Range / eLocation ID:
e2019218118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture. 
    more » « less
  2. Developmental transitions require precise temporal and spatial control of gene expression. In plants, such regulation is critical for flower formation, which involves the progressive maturation of stem cell populations within shoot meristems to floral meristems, followed by rapid sequential differentiation into floral organs. Across plant taxa, these transitions are orchestrated by the F-box transcriptional cofactor geneUNUSUAL FLORAL ORGANS(UFO). The conserved and pleiotropic functions ofUFOoffer a useful framework for investigating how evolutionary processes have shaped the intricatecis-regulation of key developmental genes. By pinpointing a conserved promoter sequence in an accessible chromatin region of the tomato ortholog ofUFO, we engineered in vivo a series ofcis-regulatory alleles that caused both loss- and gain-of-function floral defects. These mutant phenotypes were linked to disruptions in predicted transcription factor binding sites for known transcriptional activators and repressors. Allelic combinations revealed dosage-dependent interactions between opposing alleles, influencing the penetrance and expressivity of gain-of-function phenotypes. These phenotypic differences support that robustness in tomato flower development requires precise temporal control ofUFOexpression dosage. Bridging our analysis toArabidopsis, we found that although homologous sequences to the tomato regulatory region are dispersed within theUFOpromoter, they maintain similar control over floral development. However, phenotypes from disrupting these sequences differ due to the differing expression patterns ofUFO. Our study underscores the complexcis-regulatory control of dynamic developmental genes and demonstrates that critical short stretches of regulatory sequences that recruit both activating and repressing machinery are conserved to maintain developmental robustness. 
    more » « less
  3. Abstract Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins. 
    more » « less
  4. SUMMARY WUSCHEL (WUS) is transcription factor vital for stem cell proliferation in plant meristems. In maize,ZmWUS1is expressed in the inflorescence meristem, including the central zone, the reservoir of stem cells.ZmWUS1overexpression in theBarren inflorescence3mutant leads to defects in inflorescence development. Here, single-cell ATAC-seq analysis shows thatZmWUS1overexpression alters chromatin accessibility throughout the central zone. The CAATAATGC motif, a known homeodomain recognition site, is predominantly observed in the regions with increased chromatin accessibility suggesting ZmWUS1 is an activator in the central zone. Regions with decreased chromatin accessibility feature various motifs and are adjacent toAUXIN RESPONSE FACTORgenes, revealing negative regulation of auxin signaling in the central zone. DAP-seq of ZmWUS1 identified the TGAATGAA motif, abundant in epidermal accessible chromatin compared to the central zone. These findings highlight ZmWUS1’s context-dependent mechanisms for stem cell maintenance in the inflorescence meristem. 
    more » « less
  5. ABSTRACT The formation of the plant body proceeds in a sequential post-embryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize, the REL2 family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen forrel2enhancers, we identified shorter double mutants with enlarged female inflorescence meristems (IMs) carrying mutations inRELK1. Expression and genetic analysis indicate thatREL2andRELK1cooperatively regulate female IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of theZmWUSCHEL1gene, a key stem-cell promoting transcription factor. We further demonstrate thatRELKgenes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size inrel2heterozygous plants, we also show that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species. One sentence summaryREL2-RELKs fine tune hormone and chemical cues to prevent expanded expression of ZmWUSCHEL1 in maize inflorescence meristems, and can potentially be harnessed for increasing seed yield in hybrids. 
    more » « less